The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field
Installation of the coaxial quasi-steady high-current one-stage plasma accelerator with a longitudinal magnetic field is created. The lead experiments have shown an opportunity of realization of the discharges, formation of the ionization front and generation of the plasma streams at the presence...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/88234 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field / A.N. Kozlov, S.P. Drukarenko, N.S. Klimov, A.A. Moskacheva, V.L. Podkovyrov // Вопросы атомной науки и техники. — 2009. — № 1. — С. 92-94. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-88234 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-882342015-11-11T03:02:05Z The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field Kozlov, A.N. Drukarenko, S.P. Klimov, N.S. Moskacheva, A.A. Podkovyrov, V.L. Динамика плазмы и взаимодействие плазма – стенка Installation of the coaxial quasi-steady high-current one-stage plasma accelerator with a longitudinal magnetic field is created. The lead experiments have shown an opportunity of realization of the discharges, formation of the ionization front and generation of the plasma streams at the presence of a longitudinal field in the accelerator channel. The currentvoltage characteristics of the discharge at the presence and absence of a longitudinal field are measured. It is established that a weak longitudinal field does not render the appreciable influence on the integrated characteristics of discharge in the accelerator with the rod anode in an ion current transport regime. Створено установку коаксіального квазістаціонарного сильнострумового одноступеневого плазмового прискорювача з подовжнім магнітним полем. Проведено експерименти, які продемонстрували можливість здійснення розрядів, формування фронту іонізації й генерації потоків плазми за умови існування подовжнього магнітного поля в каналі прискорювача. Виміряні вольтамперні характеристики розряду при наявності та відсутності подовжнього поля. Встановлено, що слабке подовжнє поле не створює значного впливу на інтегральні характеристики розряду в прискорювачі зі стрижневим анодом в режимі іонного струмопереносу. Создана установка коаксиального квазистационарного сильноточного одноступенчатого плазменного ускорителя с продольным магнитным полем. Проведенные эксперименты продемонстрировали возможность осуществления разрядов, формирования фронта ионизации и генерации потоков плазмы при наличии продольного поля в канале ускорителя. Измерены вольтамперные характеристики разряда при наличии и отсутствии продольного поля. Установлено, что слабое продольное поле не оказывает заметного влияния на интегральные характеристики разряда в ускорителе со стрежневым анодом в режиме ионного токопереноса. 2009 Article The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field / A.N. Kozlov, S.P. Drukarenko, N.S. Klimov, A.A. Moskacheva, V.L. Podkovyrov // Вопросы атомной науки и техники. — 2009. — № 1. — С. 92-94. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.25.Xz; 52.30.-q; 52.50.Dg http://dspace.nbuv.gov.ua/handle/123456789/88234 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Динамика плазмы и взаимодействие плазма – стенка Динамика плазмы и взаимодействие плазма – стенка |
spellingShingle |
Динамика плазмы и взаимодействие плазма – стенка Динамика плазмы и взаимодействие плазма – стенка Kozlov, A.N. Drukarenko, S.P. Klimov, N.S. Moskacheva, A.A. Podkovyrov, V.L. The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field Вопросы атомной науки и техники |
description |
Installation of the coaxial quasi-steady high-current one-stage plasma accelerator with a longitudinal magnetic field
is created. The lead experiments have shown an opportunity of realization of the discharges, formation of the ionization
front and generation of the plasma streams at the presence of a longitudinal field in the accelerator channel. The currentvoltage
characteristics of the discharge at the presence and absence of a longitudinal field are measured. It is established
that a weak longitudinal field does not render the appreciable influence on the integrated characteristics of discharge in
the accelerator with the rod anode in an ion current transport regime. |
format |
Article |
author |
Kozlov, A.N. Drukarenko, S.P. Klimov, N.S. Moskacheva, A.A. Podkovyrov, V.L. |
author_facet |
Kozlov, A.N. Drukarenko, S.P. Klimov, N.S. Moskacheva, A.A. Podkovyrov, V.L. |
author_sort |
Kozlov, A.N. |
title |
The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field |
title_short |
The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field |
title_full |
The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field |
title_fullStr |
The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field |
title_full_unstemmed |
The experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field |
title_sort |
experimental research of the electric characteristics of discharge in the quasi-steady plasma accelerator with the longitudinal magnetic field |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2009 |
topic_facet |
Динамика плазмы и взаимодействие плазма – стенка |
url |
http://dspace.nbuv.gov.ua/handle/123456789/88234 |
citation_txt |
The experimental research of the electric
characteristics of discharge in the quasi-steady plasma
accelerator with the longitudinal magnetic field / A.N. Kozlov, S.P. Drukarenko, N.S. Klimov, A.A. Moskacheva, V.L. Podkovyrov // Вопросы атомной науки и техники. — 2009. — № 1. — С. 92-94. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kozlovan theexperimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT drukarenkosp theexperimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT klimovns theexperimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT moskachevaaa theexperimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT podkovyrovvl theexperimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT kozlovan experimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT drukarenkosp experimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT klimovns experimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT moskachevaaa experimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield AT podkovyrovvl experimentalresearchoftheelectriccharacteristicsofdischargeinthequasisteadyplasmaacceleratorwiththelongitudinalmagneticfield |
first_indexed |
2025-07-06T15:59:45Z |
last_indexed |
2025-07-06T15:59:45Z |
_version_ |
1836913876782809088 |
fulltext |
PLASMA DYNAMICS AND PLASMA WALL INTERACTION
92 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2009. № 1.
Series: Plasma Physics (15), p. 92-94.
THE EXPERIMENTAL RESEARCH OF THE ELECTRIC
CHARACTERISTICS OF DISCHARGE IN THE QUASI-STEADY PLASMA
ACCELERATOR WITH THE LONGITUDINAL MAGNETIC FIELD
A.N. Kozlov1, S.P. Drukarenko3, N.S. Klimov2, A.A. Moskacheva2, V.L. Podkovyrov2
1Keldysh Institute of Applied Mathematics, RAS, Moscow, Russia
2Institute for Innovation and Fusion Research, Troitsk, Moscow reg., Russia
3Bauman Moscow State Technical University, Moscow, Russia
Installation of the coaxial quasi-steady high-current one-stage plasma accelerator with a longitudinal magnetic field
is created. The lead experiments have shown an opportunity of realization of the discharges, formation of the ionization
front and generation of the plasma streams at the presence of a longitudinal field in the accelerator channel. The current-
voltage characteristics of the discharge at the presence and absence of a longitudinal field are measured. It is established
that a weak longitudinal field does not render the appreciable influence on the integrated characteristics of discharge in
the accelerator with the rod anode in an ion current transport regime.
PACS: 52.25.Xz; 52.30.-q; 52.50.Dg
1. INTRODUCTION
One of actual problems of the modern plasma physics
is the creation of the powerful plasma accelerators which
are capable to generate the plasma streams with the
average directed energy of ions up to tens keV and with
the full energy capacity up to tens MJ. The research of
such streams is of the great importance for the solution of
problems of the plasma injection in the thermonuclear
installations, of the interaction of plasma with a surface,
of realization of the various technological applications,
and also for creation of the electrojet plasma engines.
The main principles of the coaxial quasi-steady
plasma accelerators (QSPA) are stated in works [1-2]. In
the two-stage QSPA systems it was offered to carry out
the regular ion current transport by means of the special
blocks of the anode and cathode transformers to
overcome the near electrode irregularities, in particular, to
eliminate the near anode jump of potential. The numerous
experiments on the QSPA [3-6] have confirmed as a
whole the basic ideas realized in the given installations.
The mechanism of the plasma acceleration in all QSPA is
based on the Ampere force and the use of the mainly
azimuthal component of a magnetic field in the basic
stream of the QSPA second stage and in the small coaxial
plasma accelerators forming the QSPA first stage. For
today the QSPA problems still assume the researches of
the some principle questions of plasma dynamics.
The new direction of the QSPA researches is
connected with introduction of a longitudinal magnetic
field in the system of the plasma accelerator. The
theoretical and numerical models of the plasma dynamics
in a three-component magnetic field are at present
developed and the bases of the QSPA theory with a
longitudinal magnetic field are created [7-10]. The
additional longitudinal field opens the new opportunities
to operate the plasmadynamic processes in the QSPA
channel, to overcome the phenomenon of the current
crisis, to solve the near electrode problems and the
problems of the additional isolation of the design
elements from the high-energy plasma streams.
The separate experiments [6] on the two-stage QSPA
have been carried out earlier to investigate the influence
of the channel geometry and of an external magnetic field
on a compression zone. Now the new QSPA installation
with a longitudinal magnetic field is created in the
laboratory of the pulse power systems at the Institute for
Innovation and Fusion Research. The installation consists
of the one-stage coaxial plasma accelerator and the
system of coils with a current to create an additional
longitudinal field. The first experiments are carried out on
the given installation to investigate an influence of a
longitudinal field on the discharge characteristics, the gas
ionization and near electrode processes [10].
2. EXPERIMENTAL INSTALLATION
The plasma accelerator with the coaxial electrodes and
the system of rings to create of a longitudinal field is
schematically represented on Fig. 1. The rod anode serves
as the external electrode of the accelerator. Eight rods are
in the regular intervals located at diameter. The cathode in
a working zone has the form of the rotation ellipse. The
length of the cathode profiled part is equal 62 cm, the
maximal diameter of ellipse in critical section is 48 cm.
The accelerator is placed at an end face of the working
chamber with the current-bringing cables and with the
system of the gas pulse pump. The length of the working
chamber is equal 70 cm, the diameter is 40 cm. The
working chamber through a gate valve is connected to a
receiver which has a volume in 30 times more chambers
that allows to pump out it quickly enough.
Fig. 1. The scheme of accelerator
The gas moves into a gap between the anode and
cathode filling it regularly. When a voltage arises between
the electrodes of the accelerator we observe a breakdown
of gas, the ionization front is formed and the appeared
plasma is accelerated in a longitudinal direction due to the
Ampere force. The gas inflow system allows to vary the
gas flux within the limits of 0.5…20 g/s. The standard
technique of the definition of the gas flux based on the
measurement of dependence of the dynamic pressure ( )tp
of gas filling the interelectrode gap from time was used.
The mass flux of gas can be calculated by means of
the formula where the cross-section square
of an interelectrode volume is , the velocity of the gas
outflow is V . The dynamic pressure of gas was measured
in work by means of the pressure gauge on the basis of
the piezoceramics. The gauge was located in an
interelectrode gap. Hydrogen is used as the working gas.
( ) VtpSm /=&
S
The electric scheme of the accelerator is presented in
Fig. 2. The power of the basic discharge of the accelerator
includes a section of the condenser battery C. The maximal
working voltage on the condenser battery is equal
. The maximal discharge current makes 100 kA .
The characteristic dependences of the discharge current and
voltage on the time and also the current derivative on the time
are presented in Fig. 3. These data allow to measure such
parameters of the discharge as the inductance and the
active resistance of the plasma volume . As a first
approximation it is possible to consider these parameters not
dependent on time. We use following relation
. As result we find for
hydrogen and taking
into account the obtained dependences. The found discharge
parameters allow to choose in turn the parameters of the coils
to maintain a longitudinal magnetic field of the required value.
kVU m 5=
pL
pR
( ) ( ) ( ) tdtIdLtIRtU ppppp /+=
)(01.0 OmR p = )(1018 9 HnL p
−⋅=
93
Fig. 2. Electric scheme of accelerator: , –resistance and
inductance of the cable; and mark the coils
cR cL
kR kL
3. CALCULATION OF COIL PARAMETERS
OF A LONGITUDINAL FIELD SYSTEM
To provide the necessary value of a longitudinal
magnetic field and its coordinated change together with
an azimuthal magnetic field it has been decided to
connect the coils of a longitudinal field in parallel a
discharge gap. The corresponding section of an electric
circuit is represented the dashed curve in Fig. 2 where we
have and ( ) ( )tItI pk β= const=β . We place into
the second Kirchhoff’s law for a contour including a
discharge branch and the coils of a longitudinal magnetic
field. As a result we obtain the relations of the active
resistance and inductance in
the system of a longitudinal magnetic field. We can find
the parameters of the system determining the value
. If
kI
β/рк RR = β/рк LL =
ϕα HH z /= 1<<α the inductance of an external
longitudinal field system is small enough. Therefore it has
been decided to use a magnetic system close to a system
of the Helmholtz coils (Fig. 1) instead of a long solenoid.
Fig. 3. Тhe current, the current derivative and voltage
оf discharge
The azimuthal component of a magnetic field in the
( ) ( ) rtItH po πμϕ 2/= . In turn the value of a
longitudinal magnetic field in the vicinity of the middle
part approximately can be found by means of the relation
where ( ) ARINtH koz
2μ= 2322 )( −+= hRA , is
the magnetic constant, is the ring number of one coil,
is the coil radius, is half of a distance between the
coils. The following approximate expression
is connected the ring
number of one coil with its inductance. The inductance of
system is equal at a consistent connection of
coils. Using the resulted relations it is possible to
calculate the ring number in the coil
. If
oμ
N
R h
( ) (HnNcmRL 29
1 108.14 π−⋅= )
12 LLk =
α/)(07.0 ARrnHnLN p ⋅⋅⋅⋅= 1.0=α , cmh 5.3=
and cmR 3.4= then each of two coils should consist of
one ring at the consistent connection. The comparison of
the oscillograms of a discharge current and the Helmholtz
coil current has shown that they are well coordinated.
4. THE INTEGRATED CHARACTERISTICS
OF DISCHARGE
The current-voltage characteristics of the discharge
were under construction at the time moment
corresponding a maximum of a discharge current for the
various values of a mass flux . The characteristics
corresponding to the greater flux are more to the right, i.e.
discharge resistance is in inverse proportion to a flux. The
dependence of a voltage on a current is close to linear. It
corresponds to the known results according to which the
current crisis is absent in classical understanding in
accelerators with the rod anode and continuous cathode.
m&
The current-voltage characteristics of the discharge at
7.0=m& (g/s) in the absence and the presence of the
longitudinal magnetic field are presented in ϕHH z 1.0=
Fig. 4. It is shown that within the limits of measurement
errors a weak longitudinal magnetic field does not
influence on current-voltage characteristics of discharge.
In a sense the current-voltage characteristics are the
integrated parameters of the discharge. In such treatment
the obtained result will be coordinated with the
conclusions of the work [10]. In the given work it has
been shown that an integrated plasma stream through a
surface ( orr = , 1z0 ≤≤ ) of the penetrate anode
The current-voltage characteristics of the discharge are
measured in the absence of a longitudinal magnetic field
for the various values of the gas mass flux. The
parameters of the coil are calculated and the system of a
longitudinal magnetic field is created. The scheme of
connection provided the synchronous change of a
longitudinal field and own azimuthal field of plasma.
∫=
=
=
1
0
2
z
z
roa zdVrm ρπ& , –
the plasma flux in the accelerator channel and the
integrated parameter of exchange
( ) ∫==
a
k
r
r
zz rdVrm ρπ20&
mmao && /=ξ
practically do not vary in a ion transport regime in the
presence of a longitudinal field. It has appeared that the
decrease of the normal or radial component velocity of
the plasma inflow is observed at an introduction in a
system of a longitudinal field simultaneously with
increase in density in a vicinity of the anode due to the
arising rotation. Thus the longitudinal field does not
worsen the integrated parameters of the accelerator.
rV
The measurements of the current-voltage
characteristics of the discharge for the fixed gas mass flux
are lead in the presence of an external longitudinal
magnetic field within the limits of 10 % from the own
azimuthal magnetic field of the discharge. It is found that
the weak longitudinal magnetic field does not render the
appreciable influence on the current-voltage characteristic
of the accelerator with the rod anode.
The authors are grateful to Professor A.I. Morozov
from the Kurchatov Institute for the universal support,
helpful discussions and valuable comments.
This work is supported by RFBR (N 06-02-16707).
REFERENCES
1. A.I. Morozov// Fiz. Plasmy. 1990, v.16, № 2, p. 131.
2. A.I. Morozov. Introduction in Plasmadynamics.
Moscow: “Fizmatlit”, issue 2, 2008 (in Russian).
3. A.Yu. Voloshko, I.E. Garkusha, A.I. Morozov,
D.G. Solyakov, V.I. Tereshin, A.V. Tsarenko,
V.V. Chebotarev // Fiz. Plasmy. 1990, v.16, N 2, p. 168.
4. V.G. Belan, S.P. Zolotarev, V.F. Levashov,
V.S. Mainashev, A.I. Morozov, V.L. Podkoviirov,
Yu.V. Skvortsov // Fiz. Plasmy. 1990, v.16, N 2, p. 176.
Fig. 4. Current-voltage characteristics of discharge:
■ - , ▲ - 0=zH ϕHH z 1.0=
The weak longitudinal field allows to change the
plasma dynamics in a vicinity of electrodes not rendering
the appreciable influence on the basic stream. This result
has been obtained for the plasma stationary streams
calculated by a relaxation method in view of that the
characteristic flight time of system and relaxation time
is significantly lower than the time interval corresponding
to a discharge in the quasi-steady systems ( ).
ot
pt po tt <<
5. S.I. Ananin, V.M. Astashinskii, G.I. Bakanovich,
E.A. Kostyukevich, A.M. Kuzmitskii, A.A. Man’kovskii,
L.Ya. Min’ko, A.I. Morozov // Fiz. Plasmy. 1990, v. 16,
N 2, p. 186 (in Russian).
6. G.A. Dyakonov, V.B. Tikhonov // Fiz. Plasmy. 1994,
v. 20, N 6, p. 533 (in Russian).
7. A.N. Kozlov // Fluid Dynamics. 2003, v. 38, p. 653.
8. A.N. Kozlov //Plasma Phys. Reports. 2006, v.32, p. 378.
9. A.N. Kozlov // Plasma Physics. 2008, v. 74, p. 261.
5. CONCLUSIONS 10. S.P. Drukarenko, N.S. Klimov, A.N. Kozlov,
A.A. Moskacheva, V.L. Podkovyrov // Physics of the
extreme conditions of matter – 2008 / Ed. by V.E. Fortov,
etc. IPCP RAS, Chernogolovka, 2008, p. 262.
Installation of the coaxial plasma accelerator for
research of influence of an additional longitudinal magnetic
field on the electric characteristics of the discharge and on
the parameters of a plasma stream is created. Article received 24.09.08
Revised version 14.10.08
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК РАЗРЯДА
В КВАЗИСТАЦИОНАРНОМ ПЛАЗМЕННОМ УСКОРИТЕЛЕ С ПРОДОЛЬНЫМ МАГНИТНЫМ ПОЛЕМ
А.Н. Козлов, С.П. Друкаренко, Н.С. Климов, А.А. Москачева, В.Л. Подковыров
Создана установка коаксиального квазистационарного сильноточного одноступенчатого плазменного ускорителя
с продольным магнитным полем. Проведенные эксперименты продемонстрировали возможность осуществления
разрядов, формирования фронта ионизации и генерации потоков плазмы при наличии продольного поля в канале
ускорителя. Измерены вольтамперные характеристики разряда при наличии и отсутствии продольного поля.
Установлено, что слабое продольное поле не оказывает заметного влияния на интегральные характеристики разряда в
ускорителе со стрежневым анодом в режиме ионного токопереноса.
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ЕЛЕКТРИЧНИХ ХАРАКТЕРИСТИК РОЗРЯДУ
У КВАЗІСТАЦІОНАРНОМУ ПЛАЗМОВОМУ ПРИСКОРЮВАЧІ З ПОДОВЖНІМ МАГНІТНИМ ПОЛЕМ
А.М. Козлов, С.П. Друкаренко, М.С. Клімов, А.А. Москачова, В.Л. Подковиров
Створено установку коаксіального квазістаціонарного сильнострумового одноступеневого плазмового
прискорювача з подовжнім магнітним полем. Проведено експерименти, які продемонстрували можливість здійснення
розрядів, формування фронту іонізації й генерації потоків плазми за умови існування подовжнього магнітного поля в
каналі прискорювача. Виміряні вольтамперні характеристики розряду при наявності та відсутності подовжнього
поля. Встановлено, що слабке подовжнє поле не створює значного впливу на інтегральні характеристики розряду в
прискорювачі зі стрижневим анодом в режимі іонного струмопереносу.
94
THE EXPERIMENTAL RESEARCH OF THE ELECTRIC CHARACTERISTICS OF DISCHARGE IN THE QUASI-STEADY PLASMA ACCELERATOR WITH THE LONGITUDINAL MAGNETIC FIELD
A.N. Kozlov1, S.P. Drukarenko3, N.S. Klimov2, A.A. Moskacheva2, V.L. Podkovyrov2
1. INTRODUCTION
REFERENCES
|