Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil

The distribution of electrical potential and electron density near foil, resulting in vortical electron dynamics at interaction of an intensive laser pulse with a foil, is considered.

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Maslov, V.I., Yegorov, A.M., Onishchenko, I.N., Suhostavez, O.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/88308
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil / V.I. Maslov, A.M. Yegorov, I.N. Onishchenko, O.V. Suhostavez // Вопросы атомной науки и техники. — 2009. — № 1. — С. 101-103. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-88308
record_format dspace
spelling irk-123456789-883082015-11-12T03:02:29Z Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil Maslov, V.I. Yegorov, A.M. Onishchenko, I.N. Suhostavez, O.V. Плазменная электроника The distribution of electrical potential and electron density near foil, resulting in vortical electron dynamics at interaction of an intensive laser pulse with a foil, is considered. Показано, що при взаємодії інтенсивного лазерного імпульсу з фольгою розподіл електричного потенціалу і густин частинок є таким, що в околиці фольги динаміка електронів може бути вихровою. Показано, что при взаимодействии интенсивного лазерного импульса с фольгой распределение электрического потенциала и плотностей частиц таково, что в окрестности фольги динамика электронов может быть вихревой. 2009 Article Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil / V.I. Maslov, A.M. Yegorov, I.N. Onishchenko, O.V. Suhostavez // Вопросы атомной науки и техники. — 2009. — № 1. — С. 101-103. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.27.Lw http://dspace.nbuv.gov.ua/handle/123456789/88308 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменная электроника
Плазменная электроника
spellingShingle Плазменная электроника
Плазменная электроника
Maslov, V.I.
Yegorov, A.M.
Onishchenko, I.N.
Suhostavez, O.V.
Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil
Вопросы атомной науки и техники
description The distribution of electrical potential and electron density near foil, resulting in vortical electron dynamics at interaction of an intensive laser pulse with a foil, is considered.
format Article
author Maslov, V.I.
Yegorov, A.M.
Onishchenko, I.N.
Suhostavez, O.V.
author_facet Maslov, V.I.
Yegorov, A.M.
Onishchenko, I.N.
Suhostavez, O.V.
author_sort Maslov, V.I.
title Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil
title_short Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil
title_full Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil
title_fullStr Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil
title_full_unstemmed Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil
title_sort vortical electron dynamics in plasma, observed at interaction of laser pulse with foil
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2009
topic_facet Плазменная электроника
url http://dspace.nbuv.gov.ua/handle/123456789/88308
citation_txt Vortical electron dynamics in plasma, observed at interaction of laser pulse with foil / V.I. Maslov, A.M. Yegorov, I.N. Onishchenko, O.V. Suhostavez // Вопросы атомной науки и техники. — 2009. — № 1. — С. 101-103. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maslovvi vorticalelectrondynamicsinplasmaobservedatinteractionoflaserpulsewithfoil
AT yegorovam vorticalelectrondynamicsinplasmaobservedatinteractionoflaserpulsewithfoil
AT onishchenkoin vorticalelectrondynamicsinplasmaobservedatinteractionoflaserpulsewithfoil
AT suhostavezov vorticalelectrondynamicsinplasmaobservedatinteractionoflaserpulsewithfoil
first_indexed 2025-07-06T16:04:08Z
last_indexed 2025-07-06T16:04:08Z
_version_ 1836914152856092672
fulltext PLASMA ELECTRONICS VORTICAL ELECTRON DYNAMICS IN PLASMA, OBSERVED AT INTERACTION OF LASER PULSE WITH FOIL V.I. Maslov, A.M. Yegorov, I.N. Onishchenko, O.V. Suhostavez2 NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2V.N. Karazin Kharkov National University, Kharkov, Ukraine The distribution of electrical potential and electron density near foil, resulting in vortical electron dynamics at interaction of an intensive laser pulse with a foil, is considered. PACS: 52.27.Lw 1. INTRODUCTION The interaction of an intensive laser pulse with a foil with the purpose of ion acceleration investigates in the world [1-9]. Laser acceleration of ions was observed from 1960s [10]. The electron semi-vortex or vortex is formed near an irradiated foil at certain conditions. We consider conditions of semi-vortex formation at foil irradiation by laser pulse. At effect of an intensive laser pulse on a metal foil the high-energy electrons direct through it and form near to a surface of the foil electron layer [1]. Thus electrons of the foil receive a moment from the driver. During the moment exchange the electrons get longitudinal Vqz and radial Vqr velocities. At electron leaving from the isolated foil the positive charge with surface density σ collects on it. So besides the electrical potential of the volume charge with amplitude -φd, which is formed by an electron layer at the foil’s surface [1], the polarized electrical potential φ0 is formed between the foil and this electron layer. σ is arisen up to some value, when φo+φd reaches the electron energy φo+φd≈(mec2/e)(γq-1). (1) At not large φd/φo<1 one can write approximately σ≈mec2(γq-1)/4πe2∆ξq, (2) After that the electrons come back to the foil. They come back on larger radius, than they left foil. It is determined by initial radial electron velocity Vqr, and also by their scattering on r by an own volume charge. According to [11] it can be also determined by magnetic pressure. If radius of an electron flow, leaving the foil, rq is less in comparison with the longitudinal dimension of area of their braking rq<∆ξq, a coming back flow extends on r on ∆rw≈∆ξq. At certain conditions ∆ξq is the Debye radius of high-energy (HE) electrons ∆ξq≈rdq [1]. Then we derive in nonrelativistic approximation σ≈(Vq/4e)(menq/π)1/2. (3) This layer is extended L0(t) during ion acceleration up to 60 MeV [1]. If rq>>∆rw, the vortex is not formed. The vortex can be formed, if rq<∆rw. At achievement of the flow velocity Vz≈c one can derive for certain conditions ∆ξq≈c(γq-1)1/2/ωpq, σ≈(c/2e)(γq-1)1/2(menq/π)1/2 (4) σ can be estimated from the balance of electron flows σ≈2nqrq 2∆ξq/π(∆rw)2 (5) One can see that σ is depended on ratio rq/∆rw. 2. ELECTRIC POTENTIAL DISTRIBUTION AT ELECTRON FLOW LEAVING FROM FOIL 1D numerical simulation [12] has shown, that at injection of a cold electron beam into plasma 0<z<L the strongly nonlinear structure - jump of potential can be formed near the plasma boundary. We consider properties of similar connected jump and dip of electrical potential. These jump and dip are formed by electrons, which are accelerated by a driver at its interaction with a foil. We will show, that at leaving of HE electron flow with density nq from isolated foil into vacuum the jump and dip of electrical potential, similar to [13], is possible to form near the foil. These jump and dip return electrons to the foil and accelerate ions. Let's consider at first the potential distribution along axis of HE electron flow in one- dimensional approximation in the case of relativistic HE electrons. The longitudinal structure of electrical potential along axis of the narrow flow represents potential jump near the foil and potential dip in the flow. In the limiting case rq<<∆ξq the longitudinal electrical field along axis of the flow can be presented approximately in the following kind Ez≈2πe{σ+nq[-2z+∆ξq+(rq 2+z2)1/2-(rq 2+(∆ξq-z)2)1/2 ]} (6) The potential equals maximal value φo=φ(z=0) on the foil and it equals zero in some point z0 inside the flow. On the interval z0<z<∆ξq the electrical potential dip with amplitude -ϕd is distributed. We assume that electrons of a plasma layer formed near the foil’s surface are low-energy. Then they quickly fall on the foil. Thus near the foil single group of electrons remains: HE electrons with density nq. The longitudinal velocity of the polarized electrical potential and of the volume charge potential is approximately equal to velocity of front of accelerated ions. If HE electrons are possible to present as a beam with finite energy width, far from a point of their reflection their density grows from the foil’s surface under the power law nq(z)=nq(1-γq -2)1/2[1-(1+eφ/mc2)-2]-1/2. (7) The maximal negative charge nq (max)=nq(2Vq/Vthq)1/2/γq 3/2 is reached on some distance from the foil. Vthq is the thermal velocity of HE electrons. If the distribution function of HE electrons can be presented as equilibrium Maxwell distribution function with temperature Tq, their density falls down from the foil’s surface according the exponential law nq(z)=nqexp[(φ-φo)e/Tq] . (8) With the help (7) one can show that at φc=(φo+φd)(2Vqth/c)γo 2 the reflection of HE electrons begins. For essential ion acceleration, the considered quasi- stationary distribution of the electrical potential should be supported during long time. Electrons transfer a momentum to the polarized electrical potential and to the volume charge potential. The flow of momentum PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2009. № 1. 101 Series: Plasma Physics (15), p. 101-103. transferred to the polarized electrical potential and to the volume charge potential by reflected HE electrons equals 2nqmc2(γq 2-1)/γq (or nqTq). In a field of polarized electrical potential and of volume charge potential ions receive a momentum. The speed of increase of an ion momentum is approximately equal to min0iLdVL/dt. L is the width of area of ion acceleration. The ions also select energy from the polarized electrical potential and from the volume charge potential. The speed of energy selection by ions is approximately equal to min0iLVLdVL/dt. The HE electrons at interaction with the polarized electrical potential and with the volume charge potential lose energy. The flow of energy, transferred to the polarized electrical potential and to the volume charge potential by HE electrons equals nqmc22VL(γq 2-1)/γq (or VLnqTq). One can see that the balance of energy flows is reduced to balance of momentum flows. Using the balance of momentum flows of particles, which interact with the polarized electrical potential and with the volume charge potential, one can derive approximately the expression for speed of ion acceleration: dVL/dt≈2nqmc2(γq 2-1)/γqmin0iL. (9) That the HE electrons effectively accelerate ions and not fall on walls, the radial forces should confine their in the region of ion localization. As the low-energy electrons quickly fall on the foil, one can write n0i(z)≥nqγq -2. (10) from the condition of radial confinement of the HE electrons. (10) is correct at semi-vortex or vortex formation. The inequality (10) is correct at γq>>1, n0i<<nq and at γq>1, n0i<nq. Let's derive the equation, which describes a structure of the polarized electrical potential and the volume charge potential, and estimate their width. As the law-energy electrons fall quickly on the foil, the structure of the polarized electrical potential and of the volume charge potential is determined by the HE electrons and by ions. Integrating the Poisson’s equation on φ, neglecting the small interval, closed φ=-φd, where the HE electrons are reflected, in one-dimensional approximation we derive (∂φ/∂z)2=(∂φ0/∂z)2-4πeσ(∂φ0/∂z)+8πmc2γqnq(1-γq -2)1/2× ×{[[1-e(ϕ0-ϕ)/γqmc2]2-γq -2]1/2-(1-γq -2)1/2}-4πe∫n0i(z)dφ.(11) Using the approached equality (ϕ0+ϕd) ≈ mc2(γq-1)/e and condition ∂φ/∂z=0 at φ=-φd, we derive ∂φ0/∂z=2πeσ+ +{(2πeσ)2+4πγqmc2(1-γq -1)[2nq(1+γq -1)-n0i]}1/2. (12) Let's obtain approximately width of the jump and dip: Δz=(ϕ0+ϕd)/∂φ0/∂z≈ (13) ≈(c/ωpq0)√γq/[g+(g2+2-n0i/nq)1/2], g≡2πe2σ/ωpq0mc√γq In the case of dense plasma its polarization δn=nq-n0i is small. If selfconsistent ion dynamics follows for electric field distribution such that δn≈const, one can obtain Δz≈(c/ωpq0)√γq/[g+(g2+δn/nq)1/2]. Using (4), (5) one can obtain g≈rq 2/(∆r)2. One can see that the electrical field is strengthened near foil by σ. In approximation of the HE electrons as a thin flow we obtain from (4) ϕ(z)=ϕ0-2πeσz-πenq{rq 2× ×ln{[z+(rq 2+z2)1/2][∆ξq-z+(rq 2+(∆ξq- z)2)1/2]/rq[∆ξq+(rq 2+∆ξq 2)1/2]}+ (14) +∆ξq 2/2-(∆ξq-2z)2/2+z(rb 2+z2)1/2+ +(∆ξq-z)(rb 2+(∆ξq-z)2)1/2-∆ξq(rb 2+∆ξq 2)1/2, 0<z<∆ξq. The minimal value of the potential ϕmin equals approximately at z≈∆ξq/2 ϕmin≈ϕ0-πeσ∆ξq-πenqrq 2ln(∆ξq/2rq) (15) We derive approximately from (4) ∂φ0/∂z≈2πe(σ+nqrq) (16) One can see that with decrease rq at nq=const ∂φ0/∂z decreases. However, at focusing of the HE electrons with their flow constancy the field, accelerating ions, increases. Also one can see that the field, slowing down of the thin flow of the HE electrons, is smaller in ωpqrq/c√ γq. Hence, the depth of penetration in plasma of the thin flow of electrons is more and longitudinal size of the semi-vortex or vortex in this case is more. Because ϕ0≈2πσe(c/ωpq0)√γq, then ϕmin/ϕ0≈-[πenqrq 2ln(∆ξq/2rq)]/[2πσe(c/ωpq0)√γq]. Let's consider the stability of relative electron flows concerning HF perturbations on the basis: 1-α/z2-(1-α)[(z-y)-2+R(z+y)-2]/2γq 3=0 . (17) α=n0e/n0i, z=ω/ωp , y=kVb/ωp , R is the parameter of radial distance between direct and opposite electron flows. If R=1, the counter electron flows are on the same radius. From (17) it follows that in the region of jump and dip the noise with the large phase velocities can be generated. Similar to [12, 14] the noise does not destroy the jump and dip due to: width of electron distribution function; inhomogeneity of potential, which breaks the condition of wave - particle resonance; and due to large relative velocity of noise and jump. Also the noise does not destroy the jump and dip due to decrease of n0e. Let's consider the stability of relative electron flows concerning LF perturbations on the basis: 1+α/(kd0)2-(1-α)[(z-y)-2+R(z+y)-2]/2γq 3=0 . (18) d0=(T0e/4πn0e 2)1/2. From (18) one can show, that at R=1 and n0e, below critical, determined by the inequality (Vtho/Vq)2/γq 3>α+(kd0)2 (19) the potential jump becomes unstable relative perturbations with small phase velocities. Thus, the realization of counter electron flows as a vortex can stabilize jump. If the energy of the HE electrons concerns nonrelativistic case, let us also consider this case. From the kinetic eq. one can derive the electron distribution function in 1D approximation, integrating which on velocity, we obtain the density perturbation: δn(φ)=ne-ni≈-ni+β, (20) ( ) [ ] [ ] [ ] ×           +π=β ∫∫ ∞ −ϕ −ϕ −ϕ−ϕ dV2n qqo qqo qqo TV TV TV q ( ) ( ) ( )2 2/12 qqo VexpTVV1 −    +ϕ−ϕ−× − From (20) one can see that the density of the HE electrons increases. This results in negative volume charge. The maximal value nq is reached in the region of strong electron braking: nq(φc)≈nqVq/(Vq(Tq/2)1/2)1/2=nq(Vq(2/Tq)1/2)1/2 . (21) At φ1=φo-(Vq-(2Tq)1/2)2 the reflection of the HE electrons begins. 102 From balance of momentum flows we derive similarly to (9): dVL/dt≈2nqmVq 2/min0iL (22) We determine width of jump and dip from (20) similarly to (13): Δz=(ϕ0+ϕd)/∂φ0/∂z. (23) ∂φ0/∂z=2πeσ+[(2πeσ)2+8πmVq 2(nq-n0i/4) ]1/2. One can see that the charge accumulation on the foil strengthens the accelerating field. If the distribution function of HE electrons can be presented as equilibrium Maxwell distribution function with temperature Tq, in approximation eσ<<Vq(2mnq/π)1/2 we obtain from (23) ∂φ0/∂z∼(Tqnq)1/2. With increase nq and Tq the field grows and reaches 10 GV/cm for nq≈1023cm-3 and Tq≈1 keV [1]. Thus, using (3), we obtain Δz≈4Vq/ωpq. (24) In the case of small polarization δn=nq-n0i<<n0i of dense plasma, consisting from HE electrons and ions, one can estimate Δz≈4(Vq/ωpq)(nq/δn)1/2. The electrons are extended in the first front of the flow due to the initial radial velocity, obtained as a result of scattering, and due to strong volume charge of the flow. On the foil large σ is supported, which influences on the electron flow dynamics. The electron dynamics can be represented as semi-vortex or vortex. The vortical electron trajectories are described by ∂z[Vz 2/2-(e/me)ϕ]=-Vr∂rVz, ∂r[Vr 2/2-(e/me)ϕ]=-Vz∂zVr. Introducing radius of curvature of electron trajectories in the semi-vortex or vortex, one can derive balance of forces, effecting on electron. From this balance one can conclude that the vortex’s radius is close to longitudinal its dimension. Also the vortical electron trajectories are described by the equation [ ]η=ε∇  ,V , ε≡V2/2-ϕe/me (25) One can see that the spatial change of value meV2/2-eϕ is determined by vorticity [ ]V  ×∇≡η . From this relation we derive for η  [ ] 2V,V ε∇−=η  . (26) The electron trajectories form the semi-vortex in the region of essentially 3D distribution of an electrical field. For the vortex description we also use eq. [15] ( )( ) ( )( )Vnnd He 1 eeHet  ∇ω−η=ω−η − . (27) As η=η θe  and all is homogeneous on azimuth, for nonrelativistic electrons we obtain ( )( ) 0nV e =η∇  , ne=n+∆ϕ/4πe (28) One can see that the maximal vorticity is reached in the region of the largest electron density inside the region of volume charge. In such electrical field the ions of a plasma layer, formed near foil, are accelerated [1]. The similar ion acceleration by the virtual cathode, formed by electron beam, was observed earlier. The ions are accelerated by volume charge of the HE electrons [1], and by polarized potential, appeared between the isolated foil and electron layer. The energy of accelerated ions can be determined by potential of shock and dip ε(i)≈Tq. If the accelerated ions interact with shock and dip for a long time and ion velocity is achieved to velocity of electron flow, which determine structure and value of an accelerating field, the maximal ion energy ε(i) max equals ε(i) max≈Tqmi/me. (29) In experiments (see [1]) ε(i) max=60MeV was achieved. REFERENCES 1. M. Borghesi. // 10th Easter Plasma Meeting. Cairo, Egypt, 16-18 March 2008. 2. T.Okada et al. Phys. Rev. E. 2006. V. 74. P. 026401. 3. T.Ceccotti et al. PRL. 2007. V. 99. P. 185002. 4. T.V.Liseikina, A. Macchi. Appl. Phys. Let. 2007. V. 91. P. 171502. 5. Y.T.Li et al. PRL. 2007. V. 99. P. 185002. 6. L.Romagnani et al. PRL. 2005. V. 95. P. 195001. 7. Min-Qing He et al. Phys. Rev. E. 2007. V. 76. P. 035402. 8. A. P. L Robinson et al. Phys. Rev. E. 2007. V. 75. P. 015401. 9. H.Chen et al. Phys. Rev. E. 2007. V. 76. P. 056402. 10. A.V. Gurevich et al, Sov. Phys. JETP. 1966. V. 22. P. 449. 11. S.V.Bulanov, T.Zh.Esirkepov. PRL. 2007. V. 98. P. 049503. 12. Singh N., Schunk R.W. Plasma Phys. and Contr. Fus. 1984. V. 26. P. 859. 13. Maslov V.I. Plas. Phys. Rep. 1992. V. 18. P. 1310. 14. Okuda H. et al. // Phys. Fluids. 1987. V. 30. P. 200. 15. V.I. Maslov, F. Porcelli. // Proc. of 17th Toki Conf. on Phys. of Flows and Turb. Oct. 15, 2007. Toki. P. 179. Article received 8.10.08 ВИХРЕВАЯ ДИНАМИКА ЭЛЕКТРОНОВ В ПЛАЗМЕ, НАБЛЮДАЮЩАЯСЯ ПРИ ВЗАИМОДЕЙСТВИИ ЛАЗЕРНОГО ИМПУЛЬСА С ФОЛЬГОЙ В.И. Маслов, А.М. Егоров, И.Н. Онищенко, О.В. Сухоставец Показано, что при взаимодействии интенсивного лазерного импульса с фольгой распределение электрического потенциала и плотностей частиц таково, что в окрестности фольги динамика электронов может быть вихревой. ВИХРОВА ДИНАМІКА ЕЛЕКТРОНІВ В ПЛАЗМІ, ЯКА СПОСТЕРІГАЄТЬСЯ ПРИ ВЗАЄМОДІЇ ЛАЗЕРНОГО ІМПУЛЬСУ З ФОЛЬГОЮ В.І. Маслов, О.М. Єгоров, І.М. Онишенко, О.В. Сухоставець Показано, що при взаємодії інтенсивного лазерного імпульсу з фольгою розподіл електричного потенціалу і густин частинок є таким, що в околиці фольги динаміка електронів може бути вихровою. 103 1. INTRODUCTION REFERENCES