On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma

In the frame of one-fluid MHD a possibility of the pressure perturbation resonant excitation by external low frequency helical magnetic perturbations near the plasma edge is shown. The plasma rotation plays the key role in this phenomenon. The plasma response has being taken into account. These pres...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Pankratov, I.M., Omelchenko, A.Ya.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/90611
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma / I.M. Pankratov, A.Ya. Omelchenko // Вопросы атомной науки и техники. — 2011. — № 1. — С. 23-25. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-90611
record_format dspace
spelling irk-123456789-906112016-01-04T15:46:39Z On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma Pankratov, I.M. Omelchenko, A.Ya. Магнитное удержание In the frame of one-fluid MHD a possibility of the pressure perturbation resonant excitation by external low frequency helical magnetic perturbations near the plasma edge is shown. The plasma rotation plays the key role in this phenomenon. The plasma response has being taken into account. These pressure perturbations may affect on the ballooning and peeling modes stability. У рамках однорідинної МГД показана можливість резонансного збудження збурень тиску біля краю плазми зовнішніми низькочастотними гвинтовими збуреннями магнітного поля. Обертання плазми відіграє ключову роль у цьому явищі. Враховано відгук плазми. Ці збурення тиску можуть впливати на стійкість балонних та пілінг-мод. В рамках одножидкостной МГД показана возможность резонансного возбуждения возмущений давления у края плазмы внешними низкочастотными винтовыми возмущениями магнитного поля. Вращение плазмы играет ключевую роль в этом явлении. Учтен отклик плазмы. Эти возмущения давления могут влиять на устойчивость баллонных и пилинг-мод. 2011 Article On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma / I.M. Pankratov, A.Ya. Omelchenko // Вопросы атомной науки и техники. — 2011. — № 1. — С. 23-25. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.35.Bj, 52.55.Fa http://dspace.nbuv.gov.ua/handle/123456789/90611 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Pankratov, I.M.
Omelchenko, A.Ya.
On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma
Вопросы атомной науки и техники
description In the frame of one-fluid MHD a possibility of the pressure perturbation resonant excitation by external low frequency helical magnetic perturbations near the plasma edge is shown. The plasma rotation plays the key role in this phenomenon. The plasma response has being taken into account. These pressure perturbations may affect on the ballooning and peeling modes stability.
format Article
author Pankratov, I.M.
Omelchenko, A.Ya.
author_facet Pankratov, I.M.
Omelchenko, A.Ya.
author_sort Pankratov, I.M.
title On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma
title_short On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma
title_full On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma
title_fullStr On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma
title_full_unstemmed On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma
title_sort on possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/90611
citation_txt On possibility of pressure perturbation resonant excitation by an external low frequency helical field near edge plasma / I.M. Pankratov, A.Ya. Omelchenko // Вопросы атомной науки и техники. — 2011. — № 1. — С. 23-25. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pankratovim onpossibilityofpressureperturbationresonantexcitationbyanexternallowfrequencyhelicalfieldnearedgeplasma
AT omelchenkoaya onpossibilityofpressureperturbationresonantexcitationbyanexternallowfrequencyhelicalfieldnearedgeplasma
first_indexed 2025-07-06T18:48:16Z
last_indexed 2025-07-06T18:48:16Z
_version_ 1836924479559696384
fulltext ON POSSIBILITY OF PRESSURE PERTURBATION RESONANT EXCITATION BY AN EXTERNAL LOW FREQUENCY HELICAL FIELD NEAR EDGE PLASMA I.M. Pankratov, A.Ya. Omelchenko Institute of Plasma Physics, NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: pankratov@kipt.kharkov.ua In the frame of one-fluid MHD a possibility of the pressure perturbation resonant excitation by external low frequency helical magnetic perturbations near the plasma edge is shown. The plasma rotation plays the key role in this phenomenon. The plasma response has being taken into account. These pressure perturbations may affect on the ballooning and peeling modes stability. PACS: 52.35.Bj, 52.55.Fa 1. INTRODUCTION Control of Edge Localized Modes (ELMs) is a critical issue of the present day large tokamaks and future ITER operation. ELMs are short bursts of particles and energy at tokamak edge plasma observed in H-mode operation [1, 2]. Melting, erosion and evaporation of divertor target plates may occur as results of these bursts. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. № 1. 23 Series: Plasma Physics (17), p. 23-25. Many experiments in DIII-D have shown that ELMs can be suppressed by small external low frequency helical magnetic perturbations [3, 4]. Until now, understanding of the underlying physics of ELMs and their suppressions has been far from complete. In Ref. [5] the influence of an external helical field on the equilibrium of ideal plasma was investigated in the frame of MHD theory. A perfect shielding of the external resonant field was assumed. In the present paper, a possibility of the pressure perturbation resonant excitation by external low frequency helical magnetic perturbations near the plasma edge is shown. A perfect shielding is not assumed. This pressure perturbation resonant excitation strongly depends on a plasma rotation. The plasma response takes into account. Note, that ELM frequency dependence on the toroidal rotation in JT-60U was shown [6]. 2. BASIC EQUATIONS We start from the one-fluid MHD equations 1 i d p dt c        V J B  , (1) 00  Vpdiv dt dp  , (2) the Maxwell’s equations tc rot    B E 1 , JB c rot 4  , , (3) , (4) 0Bdiv 0 ______________________________________________ Jdiv and Ohm’s Law ( - conductivity)         BVEJ c 1  , (5) where  is the plasma mass densities, p is the plasma pressure, is the current density, is the ion gyroviscosity tensor, respectively. J i We consider a current carrying toroidal plasma with nested equilibrium circular magnetic surfaces ( 0 is the radius of the magnetic surfaces, 0 is the poloidal angle in the cross-section const ,  is the toroidal angle). Each magnetic surface is shifted with respect to the magnetic axis ( is the shift, is the radius of the magnetic axis). The equilibrium toroidal contravariant component of the magnetic field, R  gB  20  , is large with respect to the poloidal one,  gB  20  ,  and   are the radial derivatives of toroidal and poloidal fluxes, respectively;   /)(aq is the safety factor, q/1 . The known expressions for metric tensor are used [7]. On each magnetic equilibrium surface (see, e.g. [7]) we introduce a straight magnetic field line coordinate system ( ,a  , ) a0 ,    sin0 a   Raaa  )( , (6)   dbb R b bp R a aR a a                          0 2 0 2 2 )( )(16 2 )(1     . (7) Assuming that perturbation we get equations r perturbations (m >>1, nq >>1). From Eq.(4) by usual approximation in 1/R one finds 0B fo way [7] in a linear 2 11 12 12 22 0 00 1 8 2 4 ( , ) 0, a a g p L g g B g g B a ag g pp J W a L B B c p c ap g                                                                        / a  (8) where ( / ) ( / )L         ,  ggpc  )0(0 2 )(4)/(  , 24   gJJ  2//0  , 0 1( , ) ( ) ( , )W a W a W a   , 0 20 0 0 2 2 0 0 2 ( ) 1 ( ) p ap SR W a RB a B a              , 0 1 2 0 2 ( , ) cos ( ) p S W a aB a     , q S a q   . Equilibrium parameters denotes by the subscript 0. _______________________________________ Assuming periodicity in both  and  , we take the perturbations in the form        nm mn tnmiaXtaX , exp,,,  , (9) where  is the frequency of the external perturbation. In our consideration all poloidal harmonic amplitudes of perturbations have finite values. The amount of poloidal harmonics with finite values of amplitudes depends on the antenna spectrum (external perturbation). Early the case was studied for one dominant poloidal external mode and neighboring poloidal modes were considered as small [8]. Using Eq. (9), Eq. (8) (derivatives with respect to radius a denote by the prime) becomes   0 2 0 1 1 0 1 12 2 0 0 0 2 0 1 1 1 12 0 0 0 0 4 4 2 ( ) ( ) ( ) ( ) ( / ) ( ) ( ) ( ) 8 4 4 ( 1 ) ( ) ( 1) ( 1) ( ) ( ) ( ) ( ) a a a a m m m m m m m m m m m m m BSqR iqR aR F a i a B mB p B B p a B B J a B a B a c B a apim a R i i S p ap ap m p m p B a R B a a B a B a                                                  .0   (10) In Eq. (10) ( )mF a m n  , 0 ( ) / 2 ,B a a  00 ( ) / 2 ,B a R   ( )aaB  0.m mimaB  _ _____________________________________ In the similar way from Eq. (2), using the parallel (with respect to equilibrium magnetic field) momentum from Eq. (1), we get for pressure perturbation ( 0div  V ) the next equation: (11) Here 2 2 2 a 2 ( ) ( ),s m im m m c a F R     2 0 0 0 ,s p c    (12) 0 0 0 0 0 0 ( ) ,m m B BF a Em V c B R B a B      0 a (13) 0 0 0 0 0 0 0 ( ) [ (m i im B F a p Em V c c B R a en B B        0 )]a m . (14) ______________________________________________ We took into account the equilibrium poloidal plasma rotation due to the existence of an equilibrium radial electric field E0a and the ion diamagnetic drift; and the parallel with respect to equilibrium magnetic field plasma rotation with a velocity . Recall that (see, e.g. [7, 9]). 0V  a a a m Em pV V V  From the radial component of Faraday’s Law and Ohm’s Law Eq. (5) we find 2 0 2 m 2 ( ) ( ) 4 a a i m m m m m B ic m aB F a V i a B mB R a          . (15) ____________________________________________ Equations (10), (11) and (15) describe the affect of an external helical field on the ballooning and peeling modes due to the direct change of the edge plasma pressure. This affect has a resonant character. 3. DISCUSSIONS When 2 2 2 ( ) ( ) 0,s m im m m c a F R     2 a (16) the resonant excitation of pressure perturbation takes place. Note, that during the plasma eigenmodes stability analysis for a pressure perturbation (Eq. (1.98) of [10]) the nonresonant term occurred. 2 2 2 2( / ) ( )s mc R F a  For more typical situation, when 0 0 ( ) a m s Ea F a c c mR B  , t he resonant excitation takes place, if 0 0 0 0 0 0 ( )m a B BF a Em V c B R B a B     0 (17) or 0 0 0 0 0 0 0 ( ) [ (m i B F a p Em V c c B R a en B B      0 )]a . (18) 2 2 0 0 1 1 0 0 0 0 1 12 0 0 ( ) ( ) ( ) ( ) . 1 1 a a a a a a as m m s m m m m Em m m m m m Bc B c aV aVi p F a V V p p V V V R B B R m m                                    Resonant conditions (17) and (18) useful to present in next form, respectively: 0 0 0 aE k V k c B     , (19) 0 0 0 0 0 ( )ip E k V k c c en B B        25 0a . (20) In the case 0  (e.g. for DIII-D) resonant conditions (17) and (18) convenient to present the next way: 0 0 0 ( ) ( ( ) / ) aE aa a n m V c R    B , (21) 0 0 0 0 0 ( ( ) / ) ( )aE pa a n m V c c R B      0 i en B . (22) Note, that for DIII-D edge plasma parameters [3, 4] the resonant conditions (21) and (22) may be realized. 4. CONCLUSIONS A possibility of the pressure perturbation resonant excitation by external low frequency helical magnetic perturbations near the plasma edge is shown. This phenomenon occurs during the plasma rotation. It may affect on the ballooning and peeling modes excitation because of a plasma pressure change. The equations that describe this influence on the ballooning and peeling modes excitation are derived on the basis of MHD equations when all poloidal harmonic amplitudes of external perturbations have finite values. Plasma rotation and plasma response are taken into account. Expected result may be used for interpretation of the plasma stability experiments in tokamaks JET, DIII-D, TEXTOR and future ITER operation. REFERENCES 1. K. Kamiya, N. Asakura, J. Boedo, et al. Edge localized modes: recent experimental findings and related issues // Plasma Phys. Control. Fusion. 2007, v. 49, N 7, p. S43-S62. 2. P-H. Rebut. From JET to the reactor // Plasma Phys. Control. Fusion. 2006, v. 48, N 12B, p. B1-B14. 3. T.E. Evans, R.A. Moyer, P.R. Thomas, et al. Suppression of large edge localized modes in high confinement DIII-D plasmas with a stochastic magnetic boundary // Phys. Rev. Letters. 2004, v. 92, N 23, 235003. 4. T.E. Evans, R.A. Moyer, K.H. Burrell, et al. Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas // Nature Physics. 2006, v. 2, N 6, p.419-423. 5. J.−K. Park, M.J. Schaffer, J.E. Menard, A.H. Boozer. Control of asymmetric magnetic perturbations in tokamaks // Phys. Rev. Letter. 2007, v.99, р. 195003. 6. N. Oyama, Y. Kamada, A. Isayama, et al. ELM frequency dependence on toroidal rotation in grassy ELM regime in JT-60U // Plasma Phys. Control. Fusion. 2007, v.49, N 3, p. 249-259. 7. A.B. Mikhailovskii. Instabilities of plasma in magnetic traps. Moscow: ”Atomizdat”, 1978 (in Russian). 8. I.M. Pankratov, A.Ya. Omelchenko. Influence of an external low frequency helical perturbation on the ballooning modes // Problems of Atomic Science and Technology. Series «Plasma Physics (14)», 2008. N 6, p. 25-27. 9. A.I. Smolyakov, X. Garbet, C. Bourdelle. On the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field // Nucl. Fusion. 2009, v. 49, N 12, p. 125001. 10. A.B. Mikhailovskii. Reviews of Plasma Physics. Moscow: “Atomizdat”, 1979, v. 9, p. 3 (in Russian). Article received 10.10.10 О ВОЗМОЖНОСТИ РЕЗОНАНСНОГО ВОЗБУЖДЕНИЯ ВОЗМУЩЕНИЯ ДАВЛЕНИЯ ВНЕШНИМ НИЗКОЧАСТОТНЫМ ВИНТОВЫМ ПОЛЕМ ВБЛИЗИ КРАЯ ПЛАЗМЫ И.М. Панкратов, А.Я. Омельченко В рамках одножидкостной МГД показана возможность резонансного возбуждения возмущений давления у края плазмы внешними низкочастотными винтовыми возмущениями магнитного поля. Вращение плазмы играет ключевую роль в этом явлении. Учтен отклик плазмы. Эти возмущения давления могут влиять на устойчивость баллонных и пилинг-мод. ПРО МОЖЛИВІСТЬ РЕЗОНАНСНОГО ЗБУДЖЕННЯ ЗБУРЕННЯ ТИСКУ ЗОВНІШНІМ НИЗЬКОЧАСТОТНИМ ГВИНТОВИМ ПОЛЕМ БІЛЯ КРАЮ ПЛАЗМИ І.М. Панкратов, О.Я. Омельченко У рамках однорідинної МГД показана можливість резонансного збудження збурень тиску біля краю плазми зовнішніми низькочастотними гвинтовими збуреннями магнітного поля. Обертання плазми відіграє ключову роль у цьому явищі. Враховано відгук плазми. Ці збурення тиску можуть впливати на стійкість балонних та пілінг-мод. where is the frequency of the external perturbation. Here We took into account the equilibrium poloidal plasma rotation due to the existence of an equilibrium radial electric field E0a and the ion diamagnetic drift; and the parallel with respect to equilibrium magnetic field plasma rotation with a velocity. Recall that (see, e.g. [7, 9]). REFERENCES