Plasma confinement by means of poloidal-toroidal magnetic surfaces

The paper proposes to perform plasma magnetic confinement in the constructions where plasma streams flow by knotted trajectories. It is shown that in this case due to more complicated topology of plasma circulation, a quasi-stationary equilibrium may be carried out without an external magnetic field...

Full description

Saved in:
Bibliographic Details
Date:2011
Main Authors: Maksyuta, M.V., Golovach, G.P., Martysh, Ye.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/90616
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Plasma confinement by means of poloidal-toroidal magnetic surfaces / M.V. Maksyuta, G.P. Golovach, Ye.V. Martysh // Вопросы атомной науки и техники. — 2011. — № 1. — С. 38-40. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-90616
record_format dspace
spelling irk-123456789-906162016-01-04T15:48:01Z Plasma confinement by means of poloidal-toroidal magnetic surfaces Maksyuta, M.V. Golovach, G.P. Martysh, Ye.V. Магнитное удержание The paper proposes to perform plasma magnetic confinement in the constructions where plasma streams flow by knotted trajectories. It is shown that in this case due to more complicated topology of plasma circulation, a quasi-stationary equilibrium may be carried out without an external magnetic field, and i.e. plasma is self-confined by the self-generation of poloidal-toroidal magnetic surfaces. This phenomenon may serve as a mechanism of a ball-lightning origination and existence. Пропонується магнітне утримання плазми здійснювати в таких конструкціях, в яких плазмові потоки рухаються завузленими траєкторіями. Показується, що в цьому випадку за рахунок більш складної топології циркуляції плазми квазістійка рівновага може існувати і без зовнішнього магнітного поля, тобто плазма утримує сама себе за допомогою породжуваних нею полоїдально-тороїдальних поверхонь. Це явище може слугувати механізмом виникнення та існування кульової блискавки. Предлагается магнитное удержание плазмы осуществлять в конструкциях, в которых плазменные потоки движутся заузленными траекториями. Показывается, что в этом случае за счет более сложной топологии циркуляции плазмы квазиустойчивое равновесие может существовать и без внешнего магнитного поля, т.е. плазма удерживает сама себя с помощью порождаемых ею полоидально-тороидальных магнитных поверхностей. Это явление может служить механизмом возникновения и существования шаровой молнии. 2011 Article Plasma confinement by means of poloidal-toroidal magnetic surfaces / M.V. Maksyuta, G.P. Golovach, Ye.V. Martysh // Вопросы атомной науки и техники. — 2011. — № 1. — С. 38-40. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 52.55. – s http://dspace.nbuv.gov.ua/handle/123456789/90616 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Maksyuta, M.V.
Golovach, G.P.
Martysh, Ye.V.
Plasma confinement by means of poloidal-toroidal magnetic surfaces
Вопросы атомной науки и техники
description The paper proposes to perform plasma magnetic confinement in the constructions where plasma streams flow by knotted trajectories. It is shown that in this case due to more complicated topology of plasma circulation, a quasi-stationary equilibrium may be carried out without an external magnetic field, and i.e. plasma is self-confined by the self-generation of poloidal-toroidal magnetic surfaces. This phenomenon may serve as a mechanism of a ball-lightning origination and existence.
format Article
author Maksyuta, M.V.
Golovach, G.P.
Martysh, Ye.V.
author_facet Maksyuta, M.V.
Golovach, G.P.
Martysh, Ye.V.
author_sort Maksyuta, M.V.
title Plasma confinement by means of poloidal-toroidal magnetic surfaces
title_short Plasma confinement by means of poloidal-toroidal magnetic surfaces
title_full Plasma confinement by means of poloidal-toroidal magnetic surfaces
title_fullStr Plasma confinement by means of poloidal-toroidal magnetic surfaces
title_full_unstemmed Plasma confinement by means of poloidal-toroidal magnetic surfaces
title_sort plasma confinement by means of poloidal-toroidal magnetic surfaces
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/90616
citation_txt Plasma confinement by means of poloidal-toroidal magnetic surfaces / M.V. Maksyuta, G.P. Golovach, Ye.V. Martysh // Вопросы атомной науки и техники. — 2011. — № 1. — С. 38-40. — Бібліогр.: 13 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maksyutamv plasmaconfinementbymeansofpoloidaltoroidalmagneticsurfaces
AT golovachgp plasmaconfinementbymeansofpoloidaltoroidalmagneticsurfaces
AT martyshyev plasmaconfinementbymeansofpoloidaltoroidalmagneticsurfaces
first_indexed 2025-07-06T18:48:33Z
last_indexed 2025-07-06T18:48:33Z
_version_ 1836924496789897216
fulltext PLASMA CONFINEMENT BY MEANS OF POLOIDAL-TOROIDAL MAGNETIC SURFACES M.V. Maksyuta, G.P. Golovach, Ye.V. Martysh Taras Shevchenko Kiev National University, Radio Physics Department, Kiev, Ukraine E-mail: maksyuta@univ.kiev.ua The paper proposes to perform plasma magnetic confinement in the constructions where plasma streams flow by knotted trajectories. It is shown that in this case due to more complicated topology of plasma circulation, a quasi- stationary equilibrium may be carried out without an external magnetic field, and i.e. plasma is self-confined by the self-generation of poloidal-toroidal magnetic surfaces. This phenomenon may serve as a mechanism of a ball-lightning origination and existence. PACS: 52.55. – s 1. INTRODUCTION It is shown that plasma magnetic confinement may be carried out not only in tokamaks and stellarators (see, for example, [1, 2]), but in quite new constructions where plasma streams flow by knotted trajectories. If it aimed at the creation of thermonuclear synthesis reaction, such constructions may be called knotted thermonuclear synthesis reactors (KTSR). Note that first the idea concerning such constructions on heuristic level was expressed in [3, 4]. 38 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. № 1. Series: Plasma Physics (17), p. 38-40. Thus, let in KTSR the magnetic axis, i.e. the line corresponding to maximum pressure, is written down in the following vector parametric form: ( ) ( ) ( ){ }cos cos , cos sin , sinn n nR r R r rρ φ = + φ φ + φ φ ± φ r , (1) where ( )1 2n nφ = + φ , , – tore parameters, on the surface of which (Seifert surfaces [5]) one may trace this space curve (here the signs “ 2 2− π ≤ φ ≤ π ,R r ± ” correspond to right- and left-hand n-foils). In Fig. 1 possible magnetic surfaces with magnetic axis (1) in the case of the meanings of 3,5,7,9n = are represented. Besides, in this figure as an example of 5-foils, a current toroidal line is expressed schematically by a dotted line from foil 3 to foil 4 and originated by the poloidal magnetic field (heavy line). This field in concern to foil 1 is also simultaneously toroidal. Thus, an arising magnetic surface may be called poloidal-toroidal. It is generated by a toloidal-poloidal plasma current and vice versa. One may say that in the case of non-dissipative plasma the external field pressure is not in need of its confinement. At the expense of a complicated topology of KTSR, plasma in it, in a stationary regime will be considerably confined by itself. In such constructions some internally distant regions in an external region are neighboring which leads to their magnetodynamic interaction. Maybe just such constructions will be the most optimal for magnetic (correctly, self-confinement) of plasma and at last, the confinement solution of one of the main problems is the realization of the controllable thermonuclear synthesis. Further we will try to substantiate the above mentioned just from the mathematician point of view. n = 3 n = 5 1 2 3 4 5 n = 7 n = 9 Fig. 1. Schematic representation of knotted poloidal- toroidal-magnetic surfaces at various meanings of the parameter n 2. THE ORIGINATION OF POLOIDAL- TOROIDAL MAGNETIC SURFACES IN KNOTTED PLASMA VOLUMES As in [6], we will start the investigation of the equilibrium condition of knotted plasma stream from the notes of the magnetic hydrodynamics equations 1 4, 0, rot 4 , div 0, p j H H c c G H π⎡ ⎤−∇ + +ρ∇Φ = =⎣ ⎦ ΔΦ = − π ρ = ,j r rr r r (2) where , pρ – density and pressure of a conducting plasma, j r , H r – current density and a magnetic field strength, Φ , – gravitation potential and gravitation constant. However, now besides a local magnetohydrodynamic interaction leading to the generation of poloidal magnetic field plasma by a toroidal current there is a non-local interaction leading to the G generation of poloidal currents by toroidal magnetic fields. Analogous to [7] at the calculation of electrostatic potential in non-local polarizable medium, in our case at the calculation of magnetic values instead of conduction current ( )j r r r in the second equation of magnetostatic we substitute the current ( ) ( ) ( )rot 4 r cj r H r F r r dr ′′ ⎡ ⎤κ ′ ′⎢ ⎥+ − π ⎢ ⎥⎣ ∫ r rr r r r 39 ′ ⎦ r r , (3) which takes into account the reverse effect on the current in point of of magnetic fields of rr ( )H r′ r r in the points . Here – a dimensionless coefficient depending on the parameters of medium and the system geometry, r′r κ ( )F r r′− r r – an averaging nucleus taken as a function of ( ) ( )2 2 3/ 2exp 3F r r r r a a⎡ ⎤′ ′− = − − π⎢ ⎥⎣ ⎦ r r r r , where a – an averaging length, depending on medium parameters. Further, substituting (3) into the second equation of the system (2), we get integro-differential equation ( ) ( ) ( ) ( )4rot r H r H r F r r dr j c ′′ ⎧ π⎪ ′ ′ ′− κ − =⎨ ⎪⎩ ∫ r r r rr r r r r r ⎫⎪ ⎬ ⎪⎭ r , (4) which should be used in the system (2) instead of the second equation. From here it is evident that since magnetic hydrostatics equation remains invariable, magnetic field lines and lines of flux are as usual arranged at the surfaces of the constant pressure of (see, for example, [8, 9]), in spite of the fact that now these lines must not be self-orthogonal. It allows to take advantage of the results of [6, 9], where by means of Grad-Shafranov equation for axial-symmetric systems it is shown that at some parameters we get limited toroidal configurations nearby magnetic axis with circular cross- sections. One may admit that just in the case of magnetic axis like a space curve (1) there arise nearby limited configurations such as, for example, in Fig. 1. It could be shown strictly mathematical using orthogonal system of Mercier coordinates (see for example, [10]), connecting with the curve (1). Giving a spiral-like lines of flux winding on a knotted limited surface one may by means of equation (4) find magnetic field lines. Using Fourier transformation to the equation (4), we find constp = ( ) ( ) ( )4 , r H r j r G r r c ′ π ⎡ dr⎤′ ′ ′ , (5) = −⎣ ⎦∫ r rr rr r r r r where ( ) ( ) ( ) ( )2 2 2 sin3 1 exp 4 2 k k r r dk k k a k G r r ⎡ ⎤′−− ⎣ ⎦ ⎡ +κ −⎣ ⎦ ′− = π ∫ r r r 3. THE OBTAINING OF THE CONDITION OF A STEADY BALANCE IN KNOTTED CONFIGURATIONS It is known [8, 9], that in the case of plasma confinement in tokamaks and stellarators there is so- called virial theorem, leading to a condition of 2 3 0 8 r Hp dr ⎛ ⎞ + =⎜ ⎟⎜ ⎟π⎝ ⎠ ∫ r r , (6) which fulfills only at the meanings of and 0p = 0H = r , when plasma is absent. Substituting current density from the equation (4) into the first equation of the system (2) (we neglect gravitation potential Φ in this case), after the transformations given in [8], we get an essential condition of a steady equilibrium ( ) ( ) ( ) 2 3 8 , , 4 r r r r Hp dr r j r F r r H r dr dr ′ ⎛ ⎞ + =⎜ ⎟⎜ ⎟π⎝ ⎠ ⎛ ⎞κ ⎡ ⎤⎜ ⎟⎡ ⎤′ ′ ′= ⋅ ∇ −⎣ ⎦⎣ ⎦⎜ ⎟π ⎝ ⎠ ∫ ∫ ∫ r r r r r rr ,r r r r r r r (7) which fulfills just at some zero meanings of andp H r , that admits plasma presence. Thus, plasma confinement is possible just at the expense of own magnetic field. 4. ON THE MECHANISM OF BALL- LIGHTNINGS GENERATION FROM THE POINT OF VIEW OF KNOTTED OR BUNCHING PLASMA STREAMS There are some statements (see, for example, [6, 11]) that ball-lightnings are closed currents. On the basis of above mentioned it is more natural to suppose that currents in ball-lightnings are knotted (or bunching). May be the mechanism of ball-lightnings generation is in that magnetic field lines of the current curved lines at the expense of bunching from the side of positive curvature curve plasma streams more strongly and at last knot them. And maybe only in this case, as it follows from the condition (7), they may be self-confined at the expense of own magnetic fields (in many papers it is also stated that gravitation forces including into the first equation of the system (2) also play an essential role). In this connection the most frequently met ball-lightnings of 20...30 cm [12] in dimension are evidently simple knots (right- or left- hand trifoils). In nature we find some other kinds of ball- lightnings in the form of ellipsoids, strips, cylinders, spindles having tails, etc. [12]. Evidently, they may be as well compared with various knotted structures [5]. Just there may origin ball-lightnings in the form of bunching plasma vortices. For example, such a scenario may be represented by one of the frames of the cinerama in [12, 13], shown in Fig. 2 on the left. It represents the formation of three nearby placed plasmoids associated with Borromean rings (picture in Fig. 2 on the right). ⎤ r r r r r r – vector Green’s function, transforming at into the function of 0κ = ( ) ( ) 34G r r r r r r′ ′− = − π − r r r r r r r′ , and the formula (5) into the law of the Bio-Savara-Laplasa. 3. M.V. Maksyuta, E.V. Martysh, G.P. Golovach. Knotted fusion reactors // Proceedings of the IV International conferece “Electronics and applied physics”. October, 23-25, 2008, Kyiv, Ukraine, p. 108-109 (In Ukrainian). 4. M.V. Maksyuta, E.V. Martysh. Physical vacuum as crystal-like Plank plasma // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2009, N 1, p. 89-91. 5. V.V. Prasolov, A.B. Sossinsky. Knots, bunches, plaits and three-dimensional varieties. Moscow: “МTcNMO”, 1997 (In Russian). Fig. 2. The comparison of three forming plasmoids with Borromean bunching 6. V.D. Shafranov. On equlibrium magneto hydrodynamical configurations // ZhETF. 1957, v. 33, N 3(9), p. 710-722 (In Russian). At the end of this paragraph it should be mentioned, as it is stated in [13], that sometimes in ball-lightnings we observe an internal structure like, for example, shining layers or moving sparks. It may serve one more argument in favor of the proposed mechanism of ball-lightnings origination. 7. Ye. Koskin, G.S. Dragan. The electrostatic potential in nonlocal polarizable media // Ukr. J. Phys. 2010, v. 55, N 7, p. 763-768 (In Ukrainian). 8. A.G. Sitechko, V.N. Mal’nev. The principles of plasma theory. Кyiv: “Naukova dumka”, 1994 (In Ukrainian). 5. CONCLUSIONS 9. V.D. Shafranov. Plasma equilibrium in magnetic field // Edited by Leontovich M.A. The questions of plasma theory. Issue 2. M.: “Atomizdat”, 1963, p. 92-131 (In Russian). Thus on the basis of above mentioned we may suppose that in the proposed knotted constructions plasma confinement at the expense of poloidal-toroidal magnetic surfaces will be longer than in tokamaks and stellarators which may lead to the achievement of Lousson criterion in the conditions of self-compensated plasma instabilities. Maybe exotic natural phenomena in the form of long- lived ball-lightnings are just empiric confirmations of the correct geometry choice while constructing thermonuclear synthesis generators in the form of knotted constructions. 10. S.L. Solovyev, V.D. Shafranov. Closed magnetic configurations for plasma confinement // Edited by Leontovich M.A. The questions of plasma theory. Issue 5. Moscow: “Atomizdat”, 1967, p. 3-208 (In Russian). 11. V.V. Balyberdin, G.A. Bryzgalov, V.G. Kasyan. The methods of obtaining of a steady system of plasma vortices // Pis’ma v ZhETF. 1968, v. 7, N 8, p. 262-264 (In Russian). REFERENCES 12. B.M. Smirnov. The physics of ball-lifgtnings // UFN. 1990, v. 160, N 4, p. 1-45 (In Russian). 1. B.B. Kadomtsev, V.D. Shafranov. Plasma magnetic restriction // UFN. 1983, v. 139, N 3, p. 399-434 (In Russian). 13. G.S. Paiva, J.V. Ferreira, C.C. Bastos, M.V.P. dos Santos, A.C. . Energy density calculations for ball-lightning-like luminous silicon balls // UFN. 2010, v. 180, N 2, p. 218-222 (In Russian). Pavao% 2. L.M. Kovrizhnykh. Modern status of stellarator programme // UFN. 2009, v. 179, N 7, p. 772-779 (In Russian). Article received 12.10.10 УДЕРЖАНИЕ ПЛАЗМЫ С ПОМОЩЬЮ ПОЛОИДАЛЬНО-ТОРОИДАЛЬНЫХ МАГНИТНЫХ ПОВЕРХНОСТЕЙ Н.В. Максюта, Г.П. Головач, Е.В. Мартыш Предлагается магнитное удержание плазмы осуществлять в конструкциях, в которых плазменные потоки движутся заузленными траекториями. Показывается, что в этом случае за счет более сложной топологии циркуляции плазмы квазиустойчивое равновесие может существовать и без внешнего магнитного поля, т.е. плазма удерживает сама себя с помощью порождаемых ею полоидально-тороидальных магнитных поверхностей. Это явление может служить механизмом возникновения и существования шаровой молнии. УТРИМАННЯ ПЛАЗМИ ЗА ДОПОМОГОЮ ПОЛОЇДАЛЬНО-ТОРОЇДАЛЬНИХ МАГНІТНИХ ПОВЕРХОНЬ М.В. Максюта, Г.П. Головач, Є.В. Мартиш Пропонується магнітне утримання плазми здійснювати в таких конструкціях, в яких плазмові потоки рухаються завузленими траєкторіями. Показується, що в цьому випадку за рахунок більш складної топології циркуляції плазми квазістійка рівновага може існувати і без зовнішнього магнітного поля, тобто плазма утримує сама себе за допомогою породжуваних нею полоїдально-тороїдальних поверхонь. Це явище може слугувати механізмом виникнення та існування кульової блискавки. 40