The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy
In this work the nuclear-physics methods of analysis of the content of a matter based on the using of proton induced characteristic X-ray emission of the atoms and momentum γ-ray emission from nuclear reaction was applied to determine the gaseous impurities N, O, F and elements B, Ca, Ti, V, Cr, F...
Gespeichert in:
Datum: | 2009 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/90787 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy / V.V. Levenets, A.O. Shchur, I.A. Petelguzov, N.N. Belash // Вопросы атомной науки и техники. — 2009. — № 6. — С. 208-211. — Бібліогр.: 2 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-90787 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-907872016-01-05T03:01:58Z The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy Levenets, V.V. Shchur, A.O. Petelguzov, I.A. Belash, N.N. Физика и технология конструкционных материалов In this work the nuclear-physics methods of analysis of the content of a matter based on the using of proton induced characteristic X-ray emission of the atoms and momentum γ-ray emission from nuclear reaction was applied to determine the gaseous impurities N, O, F and elements B, Ca, Ti, V, Cr, Fe, Ni, Cu, Nb, Mo, Cd, Sn, Hf, Pb, in zirconium alloys and to research the absorption of oxygen, nitrogen and fluorine by a matter of tubes made from alloy Zr1%Nb during the procedures of the fabricating of models of fuel assembly. There are a number of the factors, which affect negatively on material of shells and fuel assembly as hole at a technological process of manufacture fuel assembly for nuclear reactor VVER-1000. Such factors are the interstitial impurities (oxygen, nitrogen), hitting in metal during operations of hyper thermal processing, in particular, at welding details of fuel assembly. The gaseous impurities of atmosphere of the weld – nitrogen and oxygen inserted in a welding seam can degrade rust resistance of a seam and slash a plasticity of a material. A surface of manufactured fuel assembly or samples for researches can to be polluted by fluorine from pickling compositions at the stage of a chemical polish by an etching in fluorine inclusive solutions. Fluorine, as is known, is a fissile element lowering rust resistance and of details of ends of fuel assembly. Ядерно-фізичні методи аналізу складу речовини використані для визначення елементного складу виробів із цирконієвих матеріалів з включенням газових домішок C, N, O, F і елементів B, Ca, Ti, V, Cr, Fe, Ni, Cu, Nb, Mo, Cd, Sn, Hf, Pb, а також дослідження поглинання матеріалом трубок із сплаву Zr1%Nb кисню азоту і фтору при операціях по виготовленню моделей твелів. В технологічному процесі виготовлення твелів ВВЕР-1000 присутні фактори, вплив яких на матеріал оболонки і на твели в цілому можуть мати негативні наслідки. Такими факторами є домішки укорінення, що потрапляють в метал в наслідок високотемпературних обробок, зокрема при зварюванні деталей твелів. Укоріненні в зварний шов газові складові атмосфери зварки азот і кисень можуть погіршити корозійну стійкість шву і знизити пластичність матеріалу. На стадії хімічної поліровки поверхні твелів в розчинах, що вміщують фтор, можуть бути забруднення фтором, що також може знизити корозійну стійкість оболонок і кінцевих деталей твелів. Ядерно-физические методы анализа состава вещества применены для определения элементного состава изделий из циркониевых материалов, включая газообразующие примеси C, N, O, F, элементы B, Ca, Ti, V, Cr, Fe, Ni, Cu, Nb, Mo, Cd, Sn, Hf, Pb, и исследования поглощения материалом трубок из сплава Zr1%Nb кислорода, азота и фтора во время операций по изготовлению моделей твэлов. В технологическом процессе изготовления твэлов ВВЭР-1000 присутствует ряд факторов, воздействие которых на материал оболочки и на твэлы в целом может иметь негативные последствия. Такими факторами являются примеси внедрения (кислород, азот), попадающие в металл во время операций высокотемпературных обработок, в частности при сварке деталей твэлов. Внедренные в сварной шов газовые составляющие атмосферы сварки азот и кислород могут ухудшать коррозионную стойкость шва и снижать пластичность материала. На стадии химической полировки поверхности изготовленных твэлов или образцов для исследований путем травления в фторсодержащих растворах поверхность может загрязняться фтором из травильных составов. Фтор, как известно, является активным элементом, снижающим коррозионную стойкость оболочек и концевых деталей тепловыделяющих элементов. 2009 Article The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy / V.V. Levenets, A.O. Shchur, I.A. Petelguzov, N.N. Belash // Вопросы атомной науки и техники. — 2009. — № 6. — С. 208-211. — Бібліогр.: 2 назв. — рос. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/90787 539.12.074 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Физика и технология конструкционных материалов Физика и технология конструкционных материалов |
spellingShingle |
Физика и технология конструкционных материалов Физика и технология конструкционных материалов Levenets, V.V. Shchur, A.O. Petelguzov, I.A. Belash, N.N. The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy Вопросы атомной науки и техники |
description |
In this work the nuclear-physics methods of analysis of the content of a matter based on the using of proton
induced characteristic X-ray emission of the atoms and momentum γ-ray emission from nuclear reaction was applied
to determine the gaseous impurities N, O, F and elements B, Ca, Ti, V, Cr, Fe, Ni, Cu, Nb, Mo, Cd, Sn, Hf, Pb, in
zirconium alloys and to research the absorption of oxygen, nitrogen and fluorine by a matter of tubes made from
alloy Zr1%Nb during the procedures of the fabricating of models of fuel assembly. There are a number of the
factors, which affect negatively on material of shells and fuel assembly as hole at a technological process of
manufacture fuel assembly for nuclear reactor VVER-1000. Such factors are the interstitial impurities (oxygen,
nitrogen), hitting in metal during operations of hyper thermal processing, in particular, at welding details of fuel
assembly. The gaseous impurities of atmosphere of the weld – nitrogen and oxygen inserted in a welding seam can
degrade rust resistance of a seam and slash a plasticity of a material. A surface of manufactured fuel assembly or
samples for researches can to be polluted by fluorine from pickling compositions at the stage of a chemical polish by
an etching in fluorine inclusive solutions. Fluorine, as is known, is a fissile element lowering rust resistance and of
details of ends of fuel assembly. |
format |
Article |
author |
Levenets, V.V. Shchur, A.O. Petelguzov, I.A. Belash, N.N. |
author_facet |
Levenets, V.V. Shchur, A.O. Petelguzov, I.A. Belash, N.N. |
author_sort |
Levenets, V.V. |
title |
The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy |
title_short |
The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy |
title_full |
The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy |
title_fullStr |
The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy |
title_full_unstemmed |
The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy |
title_sort |
application of pixe and pige for the studying of impurities distribution in space near the seam at welding products out of the zr1%nb alloy |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2009 |
topic_facet |
Физика и технология конструкционных материалов |
url |
http://dspace.nbuv.gov.ua/handle/123456789/90787 |
citation_txt |
The application of PIXE and PIGE for the studying of impurities distribution in space near the seam at welding products out of the Zr1%Nb alloy / V.V. Levenets, A.O. Shchur, I.A. Petelguzov, N.N. Belash // Вопросы атомной науки и техники. — 2009. — № 6. — С. 208-211. — Бібліогр.: 2 назв. — рос. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT levenetsvv theapplicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy AT shchurao theapplicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy AT petelguzovia theapplicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy AT belashnn theapplicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy AT levenetsvv applicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy AT shchurao applicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy AT petelguzovia applicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy AT belashnn applicationofpixeandpigeforthestudyingofimpuritiesdistributioninspaceneartheseamatweldingproductsoutofthezr1nballoy |
first_indexed |
2025-07-06T18:59:22Z |
last_indexed |
2025-07-06T18:59:22Z |
_version_ |
1836925177313624064 |
fulltext |
УДК 539.12.074
THE APPLICATION OF PIXE AND PIGE FOR THE STUDYING OF
IMPURITIES DISTRIBUTION IN SPACE NEAR THE SEAM
AT WELDING PRODUCTS OUT OF THE Zr1%Nb ALLOY
V.V. Levenets, A.O. Shchur, I.A. Petelguzov, N.N. Belash
National Science Center “Kharkov Institute of Physics and Technology”,
Kharkov, Ukraine
E-mail: levenets@kipt.kharkov. ua
In this work the nuclear-physics methods of analysis of the content of a matter based on the using of proton
induced characteristic X-ray emission of the atoms and momentum γ-ray emission from nuclear reaction was applied
to determine the gaseous impurities N, O, F and elements B, Ca, Ti, V, Cr, Fe, Ni, Cu, Nb, Mo, Cd, Sn, Hf, Pb, in
zirconium alloys and to research the absorption of oxygen, nitrogen and fluorine by a matter of tubes made from
alloy Zr1%Nb during the procedures of the fabricating of models of fuel assembly. There are a number of the
factors, which affect negatively on material of shells and fuel assembly as hole at a technological process of
manufacture fuel assembly for nuclear reactor VVER-1000. Such factors are the interstitial impurities (oxygen,
nitrogen), hitting in metal during operations of hyper thermal processing, in particular, at welding details of fuel
assembly. The gaseous impurities of atmosphere of the weld – nitrogen and oxygen inserted in a welding seam can
degrade rust resistance of a seam and slash a plasticity of a material. A surface of manufactured fuel assembly or
samples for researches can to be polluted by fluorine from pickling compositions at the stage of a chemical polish by
an etching in fluorine inclusive solutions. Fluorine, as is known, is a fissile element lowering rust resistance and of
details of ends of fuel assembly.
INTRODUCTION
Zirconium is one the based materials using in active
zone of nuclear reactor. To add to handworks from
zirconium demanded chemical, physical and mechanical
characteristics it is necessary to clear of a starting
material from a number of pollution and enter to the
composition of zirconium alloys the certain elements in
known content. The impurities containing in zirconium
have sufficient difference in physical-chemical
properties and content. Therefore an analytical
arrangement is required including the possibility of
determination of gas-making impurities C, N, O, F and
elements Li, Be, B, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Nb,
Mo, Cd, Sn, Hf, Pb to manufacture the zirconium alloys
using in nuclear energetic. The solving of such problem
requires of the joint using of the complex of analytical
methods with high sensitivity, expressivity, cheapness,
ecological safety etc. In this work nuclear-physics
methods of analysis of a matter using characteristic X-
ray emission induced by accelerated protons (PIXE) and
proton induced momentum γ-emission from nuclear
reaction (PIGE) was applied to determine the content of
elements with atomic number in range 20<Z<82 and N,
O, F in zirconium alloys.
1. EXPERIMENTAL ARRANGEMENT
USED TO ANALYSES OF ELEMENTAL
CONTENT OF ZIRCONIUM UNITS
In National Science Center Kharkov Institute of
Physics and Technology was designed the small-sized
analytical installation “Sokol” for the analysis of
elemental content of a matter by nuclear-physical
methods using accelerated charged particles [1]. This
installation since 1983 was used for the analytical
purposes. The installation consists of the electrostatic
accelerator of a horizontal type with output equipments;
experimental cameras for application of a set of nuclear-
physical methods of the analysis; measuring -
computing equipment permitting the automation of
processing of outcomes of experiment. The accelerator
has following parameters: energy of accelerated single-
charged ions – 0.2…2 MeV; stability and energy
homogeneity of ions - 0.04 … 0.07 %; a current of
beam of ions on straight output - 50 μА; a current of
beam of ions after the analyzer - 20 μА; accelerated
ions - hydrogen and helium; resource of operation -
3000 hours annually.
The experimental cameras are installed on four
channels. They allow to analyze the matter by PIGME,
PIXE, using elastic backscattering at large angles
(RBS), X-ray emission exited by particle induced X-ray
emission (PXX); elastic recoils from nuclear reaction
(ERD); the analysis by nuclear microbeam. This
arrangement was used for the solving of a broad
spectrum of the tasks: definition of element composition
of matter (construction materials, materials of an
electronics engineering, geologic samples, objects of an
environment, medicine etc.); learning of allocation of
impurities on a surface and in bulk of a sample with
high space permission; learning of physical-chemical
processes (corrosion, thermal and radiation-stimulate
diffusion, ion implantation, ionic - plasma coating.
For execution of this work the camera using the
complex of methods PIXE and PIGE was utilized. The
target folder allows to dispose in the camera
simultaneously up to 16 thick or thin targets. The
camera was isolated from beam tube vacuum and
adjusting equipment and was utilized as a Faraday cap
for measurement of the charge of protons, which has
landed on the target. To measure X-ray and γ-ray
emission Si(Li) and Ge(Li) detectors were used. The
208 Серия: Вакуум, чистые материалы, сверхпроводники (18), с. 208-211.
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2009. №6.
Pb-Ta collimator of X-ray emission and set of absorbers
were allocated before the face of Si (Li) detector.
1.1. SAMPLE PREPARATION
The demountable device was designed for learning
absorption of gases from a welding atmosphere during
argon-arc and helium-arc welding (Fig. 1). This devise
permitted to produce welded samples for carrying out of
the analysis. It allowed to butt-weld two nipples
∅ 9,15x7,72 mm at tight fit on hearts. The temperature
regime of thermal investment at welding was alike to
conditions of welding of nozzles of fuel assembly to the
shell.
Fig. 1. The scheme of device for manufacture of samples
of welded joints of tubes from alloy Zr1%Nb:
1 - welded nipples; 2 - end tube expanders; 3 - spigot
expander; 4 - a pressing spring; 5 - pressing cap;
6 - nut
The welding was produced using improved
installation of electric arc-welding of SA - 281 with
application of the new system admission of gas and
preparation of a welding atmosphere. Before the
welding camera was pumped off up to pressure
5⋅10-2 Pa and spacefilled by an argon or helium of given
cleanness, then again pumped off and spacefilled by gas
up to 0,14 МPa. The welding was made in argon
atmosphere at current 22 A and in helium atmosphere at
current 16 A. The welded nipples cut on formative line,
unbent on slices, from which one produced disks for an
exposure by a beam of protons from the accelerator. For
learning a kinetics of an oxidizing the cutting samples
was mechanically ground or chemically polished in
fluorine compounds traditionally applied in surfacing of
zirconium workpieces. At such processing on a surface
of workpieces the difficultly deleted residual amounts
of fluorine are saved which were determined in the
given work. The two kind of welded samples were
made. First was prepared using pure welded argon with
impurities O2 – 50 ррm, N2 – 7 ррm, H2O – 9 ррm.
Second kind of samples was prepared using the same
argon but after it purification in special patron/ The
content of impurities were no more then 1 ррm O2, N2,
H2, СО2 and H2. The etching was produced in two
solutions: 5% HF, 45% HNO3, rest water, and 10% HF,
30% HNO3, 30% H2SO4 and 30% of water. The series
wash in distilled water and in special solutions was
produced to delete of fluorine salts after an etching. The
researches were fulfilled using two sorts of samples for
comparison of tubes from experimental alloy Zr1%Nb
and samples of standard nominal alloy E110 applied for
shells of fuel assembly of nuclear reactor VVER-1000.
2. DETERMINATION OF ELEMENT
COMPOSITION AND ALLOCATIONS OF
IMPURITIES NEAR THE WELDING SEAM
For the analysis of element composition samples of
interest the targets from zirconium alloys have used as
disks with diameters 20 and thickness of 0.3 mm. The
energy of protons was 1.6 MeV, current of a beam –
3 mА, the spectrums were measured up to a charge of
protons fallen on the target 5000mC. The characteristic
X-ray emission registered by Si (Li) detector with
energy resolution 250 eV for a line 5.9 keV, which
placed at 135° to a beam direction. The momentum γ-
ray emission originating in nuclear reactions excited by
accelerated protons registered by Ge(Li) detector with
resolution 2.5 keV for a line 1332 keV placed at 45° to a
direction of a beam. The irradiated targets were in
vacuum inside the camera. X-ray emission reached
Si(Li) detector after passing through a foil from
aluminum by thickness 50 μm and diaphragm from a set
of lead-tantalum foils with diameter of a hole of
0.3 mms, that has allowed to diminish loading a
spectrometric tract of the Si(Li) detector and measure
X-ray spectra simultaneously with spectra of γ-
radiation. The sizes of a projection of a beam of protons
on the target varied from 1 mm in diameter at scan of a
surface of the target up to 15 mm.
To determine of contents of oxygen and fluorine the
lines with energy 495 keV from reaction 16О (р, γ)17F
and 6129 keV from reaction 19F(p,αγ)16O were used.
These lines registered by Ge(Li) detector
simultaneously. For optimization of conditions of
measurements the signal from the detector was divided
into two channels: including a line with energy 495 keV
and including all range of energies from 0 up to 8 MeV.
It has allowed to improve energy resolution and to
increase accuracy of determination of oxygen. On Fig. 2
are shown the parts of spectrum including lines used for
the analysis O, N and F.
For determination of nitrogen a line 4439 keV from
reaction 15N(p,αγ)12C was used. The elements with
atomic number in a range 20 < Z < 50 were determined
using X-ray emission of K – shell and contents of
hafnium and lead were determined using X-ray
emission of L-series [2].
The data obtained testify that the adding of oxygen
into surface layers of zirconium units happens mainly
during the welding. If the welding argon without
padding clearing was used the content of oxygen in
surface layer of metal was raised on 0.01…0.02 %. The
using of the patron of special clearing allows to
decrease the absorption of oxygen up to 0.01 %. An
etching of the samples on depth up to 20 microns
promotes the padding decrease of surface contamination
by oxygen. The absorption of nitrogen during welding
happens to a lesser degree, than oxygen.
There were a number of cases of absorption of
nitrogen up to 0.002 % at welding without the clearing
patron. It can be explain by the using of poor cleanness
of gas.
209
1000 1200 1400 1600 1800 2000
0
10
20
30
40
F
6129
N
4439
Channel number
keV
keV
Fig. 2. Spectrum of γ-radiation of a sample of a
zirconium alloy
The absorption of nitrogen did not exceed 0.001 %
for the majority of measurements. If the patron of
clearing and etching was used the absorption of nitrogen
was less than 0.001 weight. %. This value is close to
level of dispersion of concentration of nitrogen in initial
state of alloy.
The application of sequentially connected patrons
has reduced to twofold lowering of a level of surface
contamination by oxygen and nitrogen of welding seam.
After operations of an etching of a surface the
concentrations of nitrogen and oxygen in surface layers
have achieved basic values. The content of fluorine after
the etching was raised beside nominal value. This
enlargement makes at optimal time of an etching value
in an interval of 0.001…0.002 %. This value on the sum
with an original content of fluorine for depth of a
stratum of alloys 1…2 microns gives less than
0.06…0.10 μg/cm2. To research the distribution of light
impurities near the welding seam the local analysis
some samples was made. The diameter of proton beam
was focused to 1mm and the scanning the sample across
welding seam was carried out to determine the content
of O, N, F using PIGME.
600 800 1000
Channel number
0
100
200
300
In
te
ns
ity
o
f
co
un
ts
, a
rb
itu
ra
ry
u
ni
ts
B
429 keV
O
495 keV
511 keV
Al
844 keV
The scan was carried out at energy of a proton beam
1518 keV. Width of the welding seam was about 3 mm.
The distribution of oxygen and nitrogen near the seam
are shown in Fig. 3.
-8 -6 -4 -2 0 2 4 6
Distance from centre, mm
8
0.01
0.1
C
on
ce
nt
ra
tio
n,
w
ei
gh
t %
Zr1%Nb
O
N
Fig. 3. The variation of content of oxygen and nitrogen
inside and around welding seam. Helium-arc welding of
two nipples from an alloy Zr1%Nb
The impurities concentrations have two maximum
on the left and on the right side of center. With the
increasing of distance from centre the concentration of
both impurities descend reaching a reference value for
the given sample of an alloy.
SUMMARY
As a result of the held researches it was be shown
that using methods PIXE and PIGME it is possible to
determine simultaneously the contents of nitrogen,
oxygen, fluorine and elements with atomic numbers in a
range 20 < Z < 82 in samples of zirconium alloys. The
information about of contents in a sample of elements at
a level N - 0.006 weight. % with an error 16%, O -
0.10 weight. % with an error 16 %, F - 0.0005 weight..
% with an error 4%, Ca, Ti, V, Cr, Fe, Ni, Cu, Cd, Sn,
Hf, Pb with an error 10…15%, Nb with an error
3…5 %, Zr with an error 0.1…0.2% can be received
during 25…40 minutes.
It is shown that the using of electric arc installation
with application of the padding clearing device of
welding gas provides the obtaining of enough high
cleanness of a welding seam on contents of oxygen. The
quantity of absorbed oxygen in the field of a welding
seam compounds a maximum 0.01% if a special
clearing of welding gas used. An averaged padding
absorption of nitrogen by surface layer in the field of a
welding seam compounds values about 0.001 %. With
improvement of cleanness of welding gas and control of
its composition it is possible to provide complete
cleanness of welding seam from impurities.
210
An absorption of fluorine by surface layers of fuel
assembly tubes near of welding seam during of the
welding and etching according to laboratory technology
is not so many as 0.001…0.002 weight. %
(0.06…0.10 μg/cm2).
REFERENCES
1. A.D. Vergunov, Yu.Z. Levchenko, M.T. Novikov,
V.M. Pistryak, V.E. Storizhko, S.Ya. Chekhanov //
Problems of atomic science and tecnology. Ser.
“General and nuclear physics”. 1983, v. 3(24), p.13.
2. V.V. Levenets, A.O. Shchur, O.P. Omelnyk,
V.A. Zaporozhchenko, I.A. Petelguzov, Simultaneous
determination of oxygen, nitrogen, fluorine and metal
impurities in zirconium by nuclear-physical methods //
Manuscripts of 14 International conferences on physics
of radiation appearances and radiation technology. 12-
17 of June 2000, Alushta, Ukraine. Харьков, 2000.
Статья поступила в редакцию 01.10.2009 г.
ПРИМЕНЕНИЕ ХРИ И МИЯР ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ЭЛЕМЕНТОВ
В ОКОЛОШОВНОМ ПРОСТРАНСТВЕ В ТРУБАХ ИЗ Zr1%Nb
В.В. Левенец, А.А. Щур, И.А. Петельгузов, Н.Н. Белаш
Ядерно-физические методы анализа состава вещества применены для определения элементного состава
изделий из циркониевых материалов, включая газообразующие примеси C, N, O, F, элементы B, Ca, Ti, V,
Cr, Fe, Ni, Cu, Nb, Mo, Cd, Sn, Hf, Pb, и исследования поглощения материалом трубок из сплава Zr1%Nb
кислорода, азота и фтора во время операций по изготовлению моделей твэлов. В технологическом процессе
изготовления твэлов ВВЭР-1000 присутствует ряд факторов, воздействие которых на материал оболочки и
на твэлы в целом может иметь негативные последствия. Такими факторами являются примеси внедрения
(кислород, азот), попадающие в металл во время операций высокотемпературных обработок, в частности
при сварке деталей твэлов. Внедренные в сварной шов газовые составляющие атмосферы сварки азот и
кислород могут ухудшать коррозионную стойкость шва и снижать пластичность материала. На стадии
химической полировки поверхности изготовленных твэлов или образцов для исследований путем травления
в фторсодержащих растворах поверхность может загрязняться фтором из травильных составов. Фтор, как
известно, является активным элементом, снижающим коррозионную стойкость оболочек и концевых
деталей тепловыделяющих элементов.
ВИКОРИСТАННЯ ХРВ І МВЯР ДЛЯ ДОСЛІДЖЕННЯ РОЗПОДІЛУ ЕЛЕМЕНТІВ
БІЛЯ СВАРНОГО ШВУ В ТРУБКАХ ІЗ Zr1%Nb
В.В. Левенець, А.О. Щур, І.А. Петельгузов, М.М. Білаш
Ядерно-фізичні методи аналізу складу речовини використані для визначення елементного складу виробів
із цирконієвих матеріалів з включенням газових домішок C, N, O, F і елементів B, Ca, Ti, V, Cr, Fe, Ni, Cu,
Nb, Mo, Cd, Sn, Hf, Pb, а також дослідження поглинання матеріалом трубок із сплаву Zr1%Nb кисню азоту і
фтору при операціях по виготовленню моделей твелів. В технологічному процесі виготовлення твелів
ВВЕР-1000 присутні фактори, вплив яких на матеріал оболонки і на твели в цілому можуть мати негативні
наслідки. Такими факторами є домішки укорінення, що потрапляють в метал в наслідок
високотемпературних обробок, зокрема при зварюванні деталей твелів. Укоріненні в зварний шов газові
складові атмосфери зварки азот і кисень можуть погіршити корозійну стійкість шву і знизити пластичність
матеріалу. На стадії хімічної поліровки поверхні твелів в розчинах, що вміщують фтор, можуть бути
забруднення фтором, що також може знизити корозійну стійкість оболонок і кінцевих деталей твелів.
211
1.1. SAMPLE PREPARATION
Fig. 2. Spectrum of (-radiation of a sample of a zirconium alloy
SUMMARY
REFERENCES
|