On the transport properties of a nonideal plasma of underwater discharges

It is considered the peculiarities of the transport properties of a nonideal plasma of underwater discharges at pressure range from 1 up to 200 bar. The transport coefficient set based on the Grad’s method is compared with the data obtained by using of the Lorentzian plasma theory at the same plas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Starchyk, P.D., Porytskyy, P.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/90951
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the transport properties of a nonideal plasma of underwater discharges / P.D. Starchyk, P.V. Porytskyy // Вопросы атомной науки и техники. — 2011. — № 1. — С.140-142. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-90951
record_format dspace
spelling irk-123456789-909512016-01-07T03:02:02Z On the transport properties of a nonideal plasma of underwater discharges Starchyk, P.D. Porytskyy, P.V. Низкотемпературная плазма и плазменные технологии It is considered the peculiarities of the transport properties of a nonideal plasma of underwater discharges at pressure range from 1 up to 200 bar. The transport coefficient set based on the Grad’s method is compared with the data obtained by using of the Lorentzian plasma theory at the same plasma composition. Also, the calculation data are considered to be in reference with transport coefficients obtained by using the Chapman-Enskog’ method. It is pointed that the nonideality effects are needed to take into consideration under calculation of properties of underwater discharge. Розглянуто особливості транспортних властивостей неідеальної плазми підводних розрядів в діапазоні тисків 1...200 бар. Транспортні коефіцієнти, що були розраховані на основі методу Ґреда, порівняно із результатами, які ґрунтувалися на лоренцевій теорії за однакового складу плазми. Також результати обчислень порівнювалися із даними, що отримані за допомогою метода Чепмена-Енскоґа. Наголошено необхідність взяття до уваги ефектів неідеальності плазми для розрахунку властивостей плазми підводних розрядів. Рассмотрены особенности транспортных свойств неидеальной плазмы подводных разрядов в диапазоне давлений 1…200 бар. Транспортные коэффициенты, которые рассчитывались на основе метода Грэда, сравниваются с результатами, полученными исходя из лоренцевой теории при одинаковом составе плазмы. Также результаты вычислений сравниваются с данными, полученными методом Чепмена-Энскога. Подчеркивается необходимость принятия во внимание эффектов неидеальности при расчете свойств подводных разрядов. 2011 Article On the transport properties of a nonideal plasma of underwater discharges / P.D. Starchyk, P.V. Porytskyy // Вопросы атомной науки и техники. — 2011. — № 1. — С.140-142. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.25.Fi ,52.25.Qt, 52.27.Fg, 52.27.Gr, 52.50.Nr, 52.70.Kz,52.77.Fv, 52.80.Wq http://dspace.nbuv.gov.ua/handle/123456789/90951 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Starchyk, P.D.
Porytskyy, P.V.
On the transport properties of a nonideal plasma of underwater discharges
Вопросы атомной науки и техники
description It is considered the peculiarities of the transport properties of a nonideal plasma of underwater discharges at pressure range from 1 up to 200 bar. The transport coefficient set based on the Grad’s method is compared with the data obtained by using of the Lorentzian plasma theory at the same plasma composition. Also, the calculation data are considered to be in reference with transport coefficients obtained by using the Chapman-Enskog’ method. It is pointed that the nonideality effects are needed to take into consideration under calculation of properties of underwater discharge.
format Article
author Starchyk, P.D.
Porytskyy, P.V.
author_facet Starchyk, P.D.
Porytskyy, P.V.
author_sort Starchyk, P.D.
title On the transport properties of a nonideal plasma of underwater discharges
title_short On the transport properties of a nonideal plasma of underwater discharges
title_full On the transport properties of a nonideal plasma of underwater discharges
title_fullStr On the transport properties of a nonideal plasma of underwater discharges
title_full_unstemmed On the transport properties of a nonideal plasma of underwater discharges
title_sort on the transport properties of a nonideal plasma of underwater discharges
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/90951
citation_txt On the transport properties of a nonideal plasma of underwater discharges / P.D. Starchyk, P.V. Porytskyy // Вопросы атомной науки и техники. — 2011. — № 1. — С.140-142. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT starchykpd onthetransportpropertiesofanonidealplasmaofunderwaterdischarges
AT porytskyypv onthetransportpropertiesofanonidealplasmaofunderwaterdischarges
first_indexed 2025-07-06T19:07:56Z
last_indexed 2025-07-06T19:07:56Z
_version_ 1836925716281688064
fulltext 140 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. № 1. Series: Plasma Physics (17), p. 140-142. ON THE TRANSPORT PROPERTIES OF A NONIDEAL PLASMA OF UNDERWATER DISCHARGES P.D. Starchyk, P.V. Porytskyy Institute for Nuclear Research of NASU, Kiev, Ukraine E-mails: starchik@kinr.kiev.ua , poryts@kinr.kiev.ua It is considered the peculiarities of the transport properties of a nonideal plasma of underwater discharges at pressure range from 1 up to 200 bar. The transport coefficient set based on the Grad’s method is compared with the data obtained by using of the Lorentzian plasma theory at the same plasma composition. Also, the calculation data are considered to be in reference with transport coefficients obtained by using the Chapman-Enskog’ method. It is pointed that the nonideality effects are needed to take into consideration under calculation of properties of underwater discharge. PACS: 52.25.Fi ,52.25.Qt, 52.27.Fg, 52.27.Gr, 52.50.Nr, 52.70.Kz,52.77.Fv, 52.80.Wq 1. INTRODUCTION Over the last decades a substantial growth has occurred in technological applications and researching of underwater discharges (arcs and electrical pulse discharges) [1-5]. The most important influence on the plasma of underwater discharges has the processes in a zone of its contact with condensed medium. At the initial stage of electrical pulse discharges (EPD) small-scale irregularities of heat flow distribution were detected on a surface of channels [1,2]. Development of such perturbations was accompanied by space modulation of an irradiation intensity, strain of a surface of channels, drop of conductance of plasma. These excitations are connected with the development of Rayleigh-Taylor instability. Thus in EPD it may be realized the two different regimes of discharges the first is characterized by developed perturbation and the second is the discharges without it. Because of that the nonideal plasma of EPD takes place in various dense states. Also, that picture is established in underwater arc discharges. In this paper it is studied the peculiarities of the transport properties of the nonideal plasma of underwater discharges in the pressure range from 1 up to 200 bar. 2. METHOD TO CALCULATE TRANSPORT PROPERTIES It is considered the calculation of transport coefficients (thermal conductivity, viscosity, electrical conductivity) in dense water plasma. The most important factors determined the properties are the following: gaseous and plasma non- idealities, multicomponent contents. To include the factors into consideration the combined calculation procedure is used on the base of the Grad’s method [6,7] and Lee-More theory [8]. The non-ideality corrections to equation of state are made according to [9-11]. The obtained results are compared with the previous calculations based on the Lorentzian theory (LM) [5,12]. Also, the calculation data are considered to be in reference with transport coefficients obtained by using the Chapman-Enskog method [13,14] and reference data [15]. The algorithm of calculation consists of three stages. At the first time it is needed to obtain the multicomponent plasma composition under certain pressure and temperature. This problem leads to the system of Saha equations with lowering of ionization energies supplemented by conservation of nuclei and electric charge. The calculations are carried out, and the following 13 species have been taken into account: e-, H2O, H2O+, H2, H2 +, OH, OH+, O2, O2+, H, H+, O, O+. Having been obtained plasma composition, the thermodynamic and transport properties of plasma can be calculated in the , so-called, zero-density model (ZM) i.e. without consideration of the nonideality effects. At next stage the nonideality corrections are included to obtain the set corresponding to the dense model (DM). A number of the properties are very interested in the connection of intended use to simulate underwater discharges. Therefore it is focused attention upon such properties. 3. RESULTS AND THEIR DISCUSSIONS The results of calculations are shown in Figs. 1-6. One can see that the properties of dense water plasma have a pronounced non-monotone character with sharp pikes in certain temperature and pressure ranges. The pikes are appeared due to the dissociation, ionization and from others effects. Thus, the viscosity peaks (Figs.5,6) are caused by the dissociation and the presence of minor additions of ions in gases at weakly ionization. It should be mentioned that the plasma composition is the same as used in paper [5] that it is allowed to compare both the Grad method approach with the Lorentzian theory. The results have a similar character at normal pressure (Figs. 1, 3, 5). On the other hand at higher pressure the essential discrepancy takes place (Figs. 2, 4, 6). One can be deduced that the effects of nonideality have influence on the transport coefficients mainly in more dense conditions and the Lorentzian theory is suitable to calculate the transport properties of multicomponent plasma at relatively low temperature and normal pressure. Also, one can see that the calculations of some properties are in a good agreement with the data from [13-15] at normal pressure. The results may be distinguished due to the various initial data for calculation. Fig. 1. Electrical conductivity of water plasma ( =1 bar). Curves 1-Loretzian model (LM); p 2- zero-density model (ZM); 3- dense model (DM); 4- data from [14] Fig. 2. Electrical conductivity of dense water plasma ( =200 bar). Curves: 1-LM; 2- ZM; 3-DM p Fig. 3. Thermal conductivity of water plasma ( =1 bar). Curves: 1-LM; 2- ZM; 3-DM; 4- data from [14]; 5- [13]; 6-[15] p Fig. 4. Thermal conductivity of dense water plasma ( p =200 bar). Curves 1-LM, 2- ZM, 3-DM Fig. 5. Viscosity of water plasma ( =1 bar). Curves: 1- LM; 2—DM; 3- data from [14]; 4- [13]; 5 -[15] p Fig. 6. Viscosity of dense water plasma ( =200 bar). Curves: 1-LM; 2-DM p 4. CONCLUSIONS The properties of dense water plasma of underwater discharges are essentially depended on both the temperature and pressure conditions. The properties have a pronounced non-monotone character with sharp pikes in certain temperature ranges. The calculations are carried out on the base of the Grad’s method including the nonideality effects. At atmospheric pressure the results are in a good agreement with the previous calculations and data calculated on the base of Chapman-Enskog’ method. On the other hand it should be pointed that the nonideality effects are needed to take into consideration under calculation of properties of underwater discharge at high pressure. The obtained results confirm the conclusion of paper [12] that the Lorentzian theory is suitable to calculate the transport properties of multicomponent plasma at relatively low temperature and normal pressure. Also, it should be born in mind that Lorentzian plasma model on the one hand takes into account the kinetic effects and on the other hand is characterized by relative simplicity, which allows its use for direct computation of the properties of plasma in the simulation of arc and pulse underwater discharges at normal pressure. REFERENCES 1. A.V. Kononov, P.V. Porytskyy, P.D. Starchyk, et al. Hydrodynamical instabilities under electrical pulse discharge in a liquid // Problems At. Sci.& Techn. Ser. “Plasma Phys”. 1999, N 3(3)/4, p.256-258. 141 142 2. P.D. Starchyk, P.V Porytskyy. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium // Problems At. Sci.& Techn. Ser. “Plasma Phys” (11), 2005, N 2, p. 179-181. 3. A. Grinenko, S. Efimov, A. Fedotov, Ya.E. Krasik, I. Schnitzer. Efficiency of the shock wave generation caused by underwater electricalwire explosion // J. Appl. Phys. 2006, v. 100, p.113509. 4. E. Gidalevich, R.L. Boxman. Steady-state model of an arc discharge in flowing water // Plasma Sources Sci. & Technol. 2006, v. 15, p. 765-772. 5. P.D. Starchyk , P.V. Porytskyy. On the properties of the nonideal plasma of electrical pulse discharge in water // Problems At. Sci.& Techn. Ser. “Plasma Phys” (14). 2008, N 6, p. 207-209. 6. H. Grad. On the kinetic theory of rarefied gases // Comm. Pure and Appl. Math. 1949, v. 2, p. 331-407. 7. V.M. Zhdanov. Transport Processes in Multicomponent Plasma. NY: “Taylor&Francis”. 2002. 8. Y.T. Lee, R.M. More. An electron conductivity model for dense plasmas // Phys. Fluids. 1984, v. 27, N 5, p. 1273-1286. 9. J.C. Rainwater, D.G. Friend, Second viscosity and thermal conductivity virial coefficients of gases: Extension to low reduced temperature // Phys. Rev. A. 1987, v. 36, N 8, p. 4062-4066. 10. F.M. Tao, E.A. Mason. Statistical-mechanical equation of state for non-polar fluids: prediction of phase boundaries // J. Chem. Phys. 1994, v. 100, N 12, p. 9075-9087. 11. M.R. Zaghloul. A simple theoretical approach to calculate electrical conductivity of nonideal copper plasma // Phys. Plasmas. 2008, v. 15, N 4, p. 42705. 12. P. Porytsky, I. Krivtsun, V. Demchenko, U. Reisgen, V. Mokrov, A. Zabirov. On the application of the theory of Lorentzian plasma to calculation of transport properties of multicomponent arc plasmas // Eur. Phys. Journ. D. 2010, v .57, N 1, p. 77-85. 13. P. Křenek. Thermophysical Properties of H2O-Ar Plasmas at Temperatures 400-50000 K and Pressure 0.1 MPa // Plasma Chem. Plasma Process. 2008, v. 28, N 1. p. 107-122. 14. J. Aubreton, M.F. Elchinger, J.M. Vinson. Transport Coefficients in Water Plasma: Part I: Equilibrium // Plasma Plasma Chem. Plasma Process. 2009, v. 29, N 2, p. 149-171. 15. N.B. Vargaftik. Handbook on thermophysical properties of gases and liquids. M.: “Nauka”, 1972 (In Russian). Article received 17.09.10 О ТРАНСПОРТНЫХ СВОЙСТВАХ НЕИДЕАЛЬНОЙ ПЛАЗМЫ ПОДВОДНЫХ РАЗРЯДОВ П.Д. Старчик, П.В. Порицкий Рассмотрены особенности транспортных свойств неидеальной плазмы подводных разрядов в диапазоне давлений 1…200 бар. Транспортные коэффициенты, которые рассчитывались на основе метода Грэда, сравниваются с результатами, полученными исходя из лоренцевой теории при одинаковом составе плазмы. Также результаты вычислений сравниваются с данными, полученными методом Чепмена-Энскога. Подчеркивается необходимость принятия во внимание эффектов неидеальности при расчете свойств подводных разрядов. ПРО ТРАНСПОРТНІ ВЛАСТИВОСТІ НЕІДЕАЛЬНОЇ ПЛАЗМИ ПІДВОДНИХ РОЗРЯДІВ П.Д. Старчик, П.В. Порицький Розглянуто особливості транспортних властивостей неідеальної плазми підводних розрядів в діапазоні тисків 1...200 бар. Транспортні коефіцієнти, що були розраховані на основі методу Ґреда, порівняно із результатами, які ґрунтувалися на лоренцевій теорії за однакового складу плазми. Також результати обчислень порівнювалися із даними, що отримані за допомогою метода Чепмена-Енскоґа. Наголошено необхідність взяття до уваги ефектів неідеальності плазми для розрахунку властивостей плазми підводних розрядів. P.D. Starchyk, P.V. Porytskyy REFERENCES О ТРАНСПОРТНЫХ СВОЙСТВАХ НЕИДЕАЛЬНОЙ ПЛАЗМЫ ПОДВОДНЫХ РАЗРЯДОВ П.Д. Старчик,  П.В. Порицкий Рассмотрены особенности транспортных свойств неидеальной плазмы подводных разрядов в диапазоне давлений 1…200 бар. Транспортные коэффициенты, которые рассчитывались на основе метода Грэда, сравниваются с результатами, полученными исходя из лоренцевой теории при одинаковом составе плазмы. Также результаты вычислений сравниваются с данными, полученными методом Чепмена-Энскога. Подчеркивается необходимость принятия во внимание эффектов неидеальности при расчете свойств подводных разрядов. ПРО ТРАНСПОРТНІ ВЛАСТИВОСТІ НЕІДЕАЛЬНОЇ ПЛАЗМИ ПІДВОДНИХ РОЗРЯДІВ П.Д. Старчик,  П.В. Порицький Розглянуто особливості транспортних властивостей неідеальної плазми підводних розрядів в діапазоні тисків 1...200 бар. Транспортні коефіцієнти, що були розраховані на основі методу Ґреда, порівняно із результатами, які ґрунтувалися на лоренцевій теорії за однакового складу плазми. Також результати обчислень порівнювалися із даними, що отримані за допомогою метода Чепмена-Енскоґа. Наголошено необхідність взяття до уваги ефектів неідеальності плазми для розрахунку властивостей плазми підводних розрядів.