Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media

A problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media, is solved. The initial problem is reduced to an isotropic one by the change of variables. First of all, the problem for small inhomogeneity is considered. Its solution is obtained by the iteration m...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Bagdoev, A.G., Sahakyan, S.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут гідромеханіки НАН України 2002
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/931
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media / A. G. Bagdoev, S. G. Sahakyan // Акуст. вісн. — 2002. — Т. 5, N 4. — С. 61-71. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-931
record_format dspace
spelling irk-123456789-9312008-10-15T18:37:28Z Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media Bagdoev, A.G. Sahakyan, S.G. A problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media, is solved. The initial problem is reduced to an isotropic one by the change of variables. First of all, the problem for small inhomogeneity is considered. Its solution is obtained by the iteration method and is expressed by quadratures from the solution of the homogeneous case. The stresses outside the crack and displacements on its faces are obtained. Besides, the solution for an arbitrary value of the inhomogeneity parameter is obtained. It is shown that its first order approximation coincides with the solution obtained by the method of small parameter. Решена задача о трещине, распространяющейся с произвольной скоростью в анизотропной неоднородной эластичной среде. Исходная задача сведена изотропной с помощью замены переменной. Прежде всего, рассмотрена задача для малой неоднородности. Ее решение получено итерационным методом и записано в квадратурах относительно решения для однородного случая. Найдены напряжения вне трещины и перемещения на ее границе. Кроме того, получено решение для произвольного значения параметра неоднородности. Показано, что аппроксимация первого порядка для него совпадает с решением, полученным методом малого параметра. Розв'язано задачу про тріщину, яка поширюється з довільною швидкістю в анізотропному неоднорідному пружному середовищі. Вихідну задачу зведено до ізотропної за допомогою заміни змінної. Насамперед, розглянуто задачу для малої неоднорідності. °ї розв'язок отримано ітераційним методом і записано в квадратурах відносно рішення для однорідного випадку. Знайдено напруження поза тріщиною й переміщення на її границі. Окрім того, отримано розв'язок для довільного значення параметра неоднорідності. Показано, що апроксимація першого порядку для нього збігається з рішенням, отриманим методом малого параметра. 2002 Article Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media / A. G. Bagdoev, S. G. Sahakyan // Акуст. вісн. — 2002. — Т. 5, N 4. — С. 61-71. — Бібліогр.: 11 назв. — англ. 1028-7507 http://dspace.nbuv.gov.ua/handle/123456789/931 539.1 en Інститут гідромеханіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media, is solved. The initial problem is reduced to an isotropic one by the change of variables. First of all, the problem for small inhomogeneity is considered. Its solution is obtained by the iteration method and is expressed by quadratures from the solution of the homogeneous case. The stresses outside the crack and displacements on its faces are obtained. Besides, the solution for an arbitrary value of the inhomogeneity parameter is obtained. It is shown that its first order approximation coincides with the solution obtained by the method of small parameter.
format Article
author Bagdoev, A.G.
Sahakyan, S.G.
spellingShingle Bagdoev, A.G.
Sahakyan, S.G.
Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
author_facet Bagdoev, A.G.
Sahakyan, S.G.
author_sort Bagdoev, A.G.
title Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
title_short Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
title_full Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
title_fullStr Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
title_full_unstemmed Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
title_sort antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media
publisher Інститут гідромеханіки НАН України
publishDate 2002
url http://dspace.nbuv.gov.ua/handle/123456789/931
citation_txt Antiplane problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media / A. G. Bagdoev, S. G. Sahakyan // Акуст. вісн. — 2002. — Т. 5, N 4. — С. 61-71. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT bagdoevag antiplaneproblemonacrackpropagatingwithanarbitraryspeedinanisotropicinhomogeneouselasticmedia
AT sahakyansg antiplaneproblemonacrackpropagatingwithanarbitraryspeedinanisotropicinhomogeneouselasticmedia
first_indexed 2025-07-02T04:32:34Z
last_indexed 2025-07-02T04:32:34Z
_version_ 1836508255696715776
fulltext ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 UDC 539.1 ANTIPLANE PROBLEM ON A CRACK, PROPAGATING WITH AN ARBITRARY SPEED IN ANISOTROPIC INHOMOGENEOUS ELASTIC MEDIA1 A. G. B AGD OE V∗, S. G. SA HAKY A N∗∗ ∗Institute of Mechanics of NAS of Armenia, Yerevan ∗∗Yerevan Institute of Architecture and Construction, Armenia Received 10.05.1999 � Revised 2.09.2002 A problem on a crack, propagating with an arbitrary speed in anisotropic inhomogeneous elastic media, is solved. The initial problem is reduced to an isotropic one by the change of variables. First of all, the problem for small inhomogeneity is considered. Its solution is obtained by the iteration method and is expressed by quadratures from the solution of the homogeneous case. The stresses outside the crack and displacements on its faces are obtained. Besides, the solution for an arbitrary value of the inhomogeneity parameter is obtained. It is shown that its first order approximation coincides with the solution obtained by the method of small parameter. Решена задача о трещине, распространяющейся с произвольной скоростью в анизотропной неоднородной эластичной среде. Исходная задача сведена изотропной с помощью замены переменной. Прежде всего, рассмотрена задача для малой неоднородности. Ее решение получено итерационным методом и записано в квадратурах относительно решения для однородного случая. Найдены напряжения вне трещины и перемещения на ее границе. Кроме того, получено решение для произвольного значения параметра неоднородности. Показано, что аппроксимация первого порядка для него совпадает с решением, полученным методом малого параметра. Розв’язано задачу про трiщину, яка поширюється з довiльною швидкiстю в анiзотропному неоднорiдному пружному середовищi. Вихiдну задачу зведено до iзотропної за допомогою замiни змiнної. Насамперед, розглянуто задачу для малої неоднорiдностi. Її розв’язок отримано iтерацiйним методом i записано в квадратурах вiдносно рiшення для однорiдного випадку. Знайдено напруження поза трiщиною й перемiщення на її границi. Окрiм того, отримано розв’язок для довiльного значення параметра неоднорiдностi. Показано, що апроксимацiя першого порядку для нього збiгається з рiшенням, отриманим методом малого параметра. INTRODUCTION Propagation of crack with arbitrary velocity is very important problem for application in seismology and the engineering use of metallic details. Because all practical materials, as a rule are inhomogeneous, it is interesting to study the influence of inhomogeneity on the stress intensity coefficient near crack’s edge and condition of opening of the crack. A solution of the plane problem for crack, mov- ing with arbitrary speed in isotropic homogeneous elastic medium, is obtained in [1] by the convolution method. Both the antiplane and plane problems for homogeneous isotropic medium are considered in [2]. For the first time a solution of the antiplane problem for homogeneous isotropic medium was given in [3]. Wide range of questions related with propagati- on of cracks was considered in [4]. The solutions, presented [2, 3], are based on technique developed in study on flow around wing in [5]. An antiplane ani- sotropic problem on crack in homogeneous medium is considered in [6]. In this paper a crack propagat- ing with arbitrary speed in an inhomogeneous ani- sotropic elastic medium for is discussed. In particular, 1Published in English as an exclusion.Translation is revised by V. N.Oliynik an antiplane problem is considered. Solutions for dis- placements on crack are obtained under conditions of small and arbitrary inhomogeneities. Besides that, a solution for stresses out of crack is obtained for small inhomogeneity. By the convolution method the alternative symmetric problem on crack with given displacements on its faces is solved. 1. STATEMENT OF PROBLEM Assume that the crack occupies some region along x-axis in plane (x, y). At that its edges x= l1(t) and x= l2(t) move with arbitrary speeds. Under menti- oned conditions one component of displacement of medium (u along z-axis) and two components of stresses (τxz , τyz) exist. The following relation is valid [6] for the stresses: τxz ρ = a2 1 ∂u ∂x + a2 12 ∂u ∂y , τyz ρ = a2 12 ∂u ∂x + a2 2 ∂u ∂y , (1) where ρ is a density of the medium; a2 1, a 2 2, a 2 12 are some constants. In what follows we consider semiplane y>0 and c© A. G. Bagdoev, S. G. Sahakyan, 2002 61 ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 Fig. 1. Characteristics pattern for propagating crack take that ρ=ρ(y). Equation of motion is written in the form ∂τxz ∂x + ∂τyz ∂y = ρ ∂2u ∂t2 . (2) Substituting Eq. (1) into Eq. (2) and introducing new variables x1 = x− a2 12 a2 2 y, y1 = y − a a2 2 y, (3) we obtain that τyz ρ = a ∂u ∂y1 , a2 = a2 1a 2 2 − a4 12, (4) ∂2u ∂x2 1 + ∂2u ∂y2 1 + 1 ρ ∂ρ ∂y1 ∂u ∂y1 = a2 2 a2 ∂2u ∂t2 . (5) So, the initial problem is reduced to problem for isotropic inhomogeneous medium. Assuming that ρ(y)=ρ0e ky1 and introducing function u = Pe(−k/2)y1 (6) we obtain from Eqs (4), (5) the following relations: τyz ρ = a ( ∂P ∂y1 − k 2 P ) e(−k/2)y1, (7) ∂2P ∂x2 1 + ∂2P ∂y2 1 − k2 4 P = a2 2 a2 ∂2P ∂t2 . (8) To complement the statement we write the boundary conditions in the form τyz ρ = a ∂u ∂y1 = τ ′ ( x, t ) ρ for y1 = 0, l1(t) < x < l2(t), u = 0 for x > l2(t), x > l1(t). (9) Obtained boundary problem (8), (9) in princi- ple can be solved by the convolution method [1]. However, complex quadratures are obtained in the solution due to inhomogeneity. Therefore, at first let us assume that the inhomogeneity is small and in only the first order terms with respect to the inhomogeneity parameter k are retained in the soluti- on. In so doing Eq. (8) can be written as an equation for homogeneous isotropic elastic medium ∂2P ∂x2 1 + ∂2P ∂y2 1 = 1 c2 ∂2P ∂t2 , c2 = a2 a2 1 (10) with the boundary conditions at y=0, derived from Eq. (9): ∂P ∂y1 − k 2 P = τ ′(x, t) ρa l1(t) < x < l2(t), P = 0, x > l2 ( t ) , x < l1(t). (11) Now let us consider the solution for semiinfinite crack, putting l1(t)=−∞. From the physical point of view such situation means that the edges of the crack do not affect one another. For the finite crack the obtained solution is valid for the right hand side region of the characteristic curve AB (fig. 1). It is expedient to introduce the functions v=∂P/∂y1. At that we can put the following conditions for y=0: v(x, 0, t) = v(x, t), P = P+ + P−, v = v+ + v−. (12) Here, index “+” corresponds to the functions being equal to zero for x<l2(t), while index “−” – to functi- ons being equal to zero for x>l2(t). After this substitution conditions (11) yield v− − k 2 P−=f ( x, t ) , f ( x, t ) = τ ′ ( x, t ) ρa , P+ =0. (13) The boundary conditions (11) and Eq. (8) were obtai- ned for the case of exponential law ρ(y1)=ρ0e ky1 . It is interesting to consider more general class of functi- ons ρ(y1), leading to mentioned equations. Let the displacement take the form u ( x, y1, t ) = F ( y1 ) P ( x, y1, t ) . Putting it into Eq. (5) we obtain that 2F ′ F + ρ′ ρ = 0, F ( 0 ) = 1, 2F ′ 0 = ρ′0 ρ0 , where primes denote differentiation with respect to y1; ρ0(0)=ρ0; ρ′0(0)=ρ′0. Originating from the above assumptions one can obtain the following relations. A. For the law ρ = ρ0 ( 1 + ρ′0 2ρ0 y1 )2 , ρ′0 ρ0 = k (14) 62 A. G. Bagdoev, S. G. Sahakyan ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 the equation ∂2P ∂x2 + ∂2P ∂y2 1 = 1 c2 ∂2P ∂t2 (15) is valid (which is analogous to Eq. (10)) along with boundary conditions (11) for y1 =0. For order of k the obtained problem is reduced to exponential problem considered above. B. For the law ρ = ρ0 ( ch k 2 y1 + ρ′0 ρ0k sh k 2 y1 )2 (16) the equation (8) for P is obtained, and boundary condition yields ∂P ∂y1 − ρ′0 2ρ0 P = τ ′ ( x, t ) ρa at y1 = 0. (17) As it is seen, this problem also is reduced to the above exponential law problem with the coeffici- ent ρ′0/ρ0 replacing the coefficient k in (11). So, in order of k both statements of the boundary problems coincide. In particular, for ρ′0/(ρ0k)=1 Eq. (16) gives ρ=ρ0e ky1 , i. e. the same as in the previous case. C. For the law ρ ρ0 = ( cos k 2 y1 + ρ′0 ρ0k sin k 2 y1 )2 (18) we obtain the equation ∂2P ∂x2 + ∂2P ∂y2 1 + k2 4 P = 1 c2 ∂2P ∂t2 (19) and the boundary condition (17). So, in order of k this problem coincides with the problem (10), (11). This is the reason for considering in further the problem stated by equation (8) in the aggregate with the boundary conditions (11), from which in order of k all mentioned cases of distribution of ρ(y1) can be obtained. 2. SOLUTION OF THE PROBLEM FOR SMALL k Solution of Eq. (10) for the boundary condition ∂P/∂y1 = v(x, t) at y1 = 0, yields the Possio integral form [3 –5] P ( x, t ) = − c π ∫ ∫ v ( x′, t′ ) dx′dt′√ c2 ( t− t′ )2 − ( x− x′ )2 . (20) From formula (20), using the condition P =0 for x>l2(t) and introducing the characteristic coordi- nates [3,5] ξ′ = ct′ − x′, η′ = ct′ + x′, ξ0 = ct− x, η0 = ct+ x, (21) one can write the solution for v+ in the form v+ = − 1 π 1√ η0 − η2 ( ξ0 ) × × η2(ξ0)∫ −ξ0 v− ( x′, t′ ) √ η0 ( ξ0 ) − η′ η0 − η′ dη′. (22) Note, that, as in [3 –5] it is accepted that l̇2(t)<c (dot denotes differentiation on t), the following equality becomes valid: η2 ( ξ0 ) = l2 ( t2 ) + ct2, ct2 − l2 ( t2 ) = ct− x. (23) Here, (l2(t2), t2 is a point of intersection of the characteristic ξ′=ξ0=const with the curve x′= l2(t′), representing a motion law for the edge of the crack (fig. 1). Changing the integration variable from η′ to x′ and taking into account Eqs (21) and (23) we obtain that η0 − η′ = 2 ( x0 − x′ ) , η2 ( ξ0 ) − η′ = 2 [ l ( t2 ) − x′ ] , η0 − η2 ( ξ0 ) = 2 [ x− l2 ( t2 )] (24) along ξ′=ξ0 [3]. Moreover, from Eq. (22) it follows that v+ = − 1 π 1√ x− l2 ( t2 )× × l2(t2)∫ x−ct v− ( x′, t+ x′ c − x c ) √ l2 ( t2 ) − x′ x− x′ dx′. (25) The above expression coincides with the solution from [3] in physical dimensional coordinates. In the present case v− is unknown. From Eq. (13) we can write that v− ( x, t ) = f ( x, t ) + k 2 P− ( x, t ) , (26) where P− is also unknown. It should be noted that integration in Eq. (20) is carried out over the domains (s0+s1+s2) (see A. G. Bagdoev, S. G. Sahakyan 63 ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 fig. 1) [5]. At the same time, originating from the boundary condition P =0 for x>l2(t), we obtain from Eq. (20), written with respect to the characteristic variables [2], that η2(ξ ′)∫ −ξ′ τ1 ( ξ′, η′ ) √ η0 − η′ dη′ + η0∫ η2(ξ′) τ1 ( ξ′, η′ ) √ η0 − η′ dη′ = 0, (27) where τ1(ξ ′, η′)=v(x′, t′); η2(ξ ′)= l2(t ′ 2)+ct ′ 2; ξ′= l2(t ′ 2)−ct′2. Therefore, it can be shown that the integrals over s1 and s2 in Eq. (20) are cancelled. So, only the integral over s0 remains [5] (filled domain in the figure). Performing integration in Eq. (20), as it was made in [2,4,5], one can obtain that P− = − 1 2π ξ0∫ ξa(η0) dξ′√ ξ0 − ξ′ η0∫ −ξ′ v1 ( ξ′, η′ ) √ η0 − η′ dη′, (28) where v1 ( x′, t′ ) = f ( x′, t′ ) + k 2 Φ− ( ξ′, η′ ) ; Φ− ( ξ′, η′ ) = P− ( x′, t′ ) . (29) Thus, for Φ−(ξ′, η′) one can obtain the integral equation f1 ( ξ′, η′ ) = f ( x′, t′ ) , Φ− ( ξ0, η0 ) = − 1 2π ξ0∫ ξa(η0) dξ′√ ξ0 − ξ′ × × η0∫ −ξ′ f1 ( ξ′, η′ ) + ( k/2 ) Φ− ( ξ′, η′ ) √ η0 − η′ dη′, (30) where ξa ( η0 ) = ct3 − l2 ( t3 ) ; ct3 + l2 ( t3 ) = ct+ x (31) along the characteristic η′=η0. In homogeneous case (k=0) the formula Φ0 − ( ξ0, η0 ) = − 1 2π ξ0∫ ξa(η0) dξ′√ ξ0 − ξ′ η0∫ −ξ′ f1 ( ξ′, η′ ) √ η0 − η′ dη′ (32) is valid. Passing to the edge of the crack x≈ l2(t) and accounting for narrowness of the domain of integrati- on in ξ′-direction and Eq. (24), one can obtain the following expression in physical coordinate x: Φ0 − ( ξ0, η0 ) = − √ 2 π √ ξ0 − ξa ( η0 ) × × x∫ x−ct f ( x′, t+ x′ c − x c ) dx′√ x− x′ , (33) where due to Eq. (31) ξ0 − ξa ( η0 ) ≈ 2 ( l2 ( t ) − x ) 1 + l̇2 ( t ) /c . (34) Finally, near the crack’s edge one can obtain for k=0 (zero approximation) that Φ0 − = P 0 − = − 1 π √ l2 ( t ) − x 1 + l̇2 ( t ) /c × × x∫ x−ct f ( x′, t+ x′ c − x c ) dx′√ x− x′ . (35) Hence, from Eq. (30) in the first order of k a closed solution can be obtained, where Φ−(ξ′, η′) in Eq. (30) should be taken from Eq. (32). Also, and in determi- nation of Φ0 −(ξ′, η′) the domain of integration should be chosen between the characteristics η′′=η′; ξ′′=ξ′; ξ′′=ξa(ξ′). Finally, we obtain that Φ0 − ( ξ′, η′ ) =− 1 2π ξ′∫ ξa(η′) dξ′′√ ξ′ − ξ′′ η′∫ −ξ′′ f1 ( ξ′′, η′′ ) √ η′ − η′′ dη′′, (36) where ξa ( η′ ) = ct′3 − l2 ( t′3 ) , ct′3 + l2 ( t′3 ) = η′. Formula (36) is valid for the points of integrati- on (ξ′, η′) in Eq. (30), for which the characteri- stic η′′=η′ intersects with the curve x′= l2(t′) (i. e., for η′>ηe = l2(0), see fig. 1). For the points (ξ′, η′), in which it intersects with x′-axis within region x′<l2(0) (i. e. for η′<ηe) one should integrate in (36) within the limits ξ1 ( η′ ) < ξ′′ < ξ′, ξ1 ( η′ ) =−η′. So, formula (30) gives for arbitrary point (x, t) the value of P−(x, t) equal to Φ−(ξ0, η0). Therefore, for small k the value Φ0 −(ξ′, η′) should be be taken from Eq. (36). For x≈ l2(t) we obtain P− = − 2 π √ l2 ( t ) − x 1 + l̇2 ( t ) /c × × x∫ x−ct { f ( x′, t+ x′ c − x c ) + + k 2 Φ0 − ( ξ0, ξ0 + 2x′ )} dx′√ x− x′ . (37) Eqs (30) and (37) give the displacement on crack u=P−. It is evident that the inhomogeneity essenti- ally effects the solution. 64 A. G. Bagdoev, S. G. Sahakyan ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 Simultaneously, at arbitrary (x, t) for x>l2(t) the value v+ is given by Eqs (22), (25), where v− ( x′, t+ x′ c − x c ) = = f ( x′, t+ x′ c − x c ) + k 2 Φ0 − ( ξ0, η ′). (38) Due to Eq. (36), etc. the following relations hold true: Φ0 − ( ξ0, η ′)=− 1 2π ξ0∫ ξa(η′) dξ′′√ ξ0 − ξ′′ × × η′∫ −ξ′′ f1 ( ξ′′, η′′ ) √ η′ − η′′ dη′′, η′ > ηe, Φ0 − ( ξ0, η ′)=− 1 2π ξ0∫ −η′ dξ′′√ ξ0 − ξ′′ × × η′∫ −ξ′′ f1 ( ξ′′, η′′ ) √ η′ − η′′ dη′′, η′ < ηe. (39) It should be mentioned that for x≈ l2(t) value ξa(η′), in contrary to ξa(η0), is not close to ξ0 and inhomogeneity significantly changes the stress v+ near the crack’s edge. 3. CONDITION OF CRACK’S PROPAGATI- ON AND SOLUTION FOR A CONSTANT TRACTION For x≈ l2(t) (x>l2(t)), originating from (25) we can write the following: τyz = v+ = K π 1√ x− l2 ( t ) , K = − √ 1 − l̇2 ( t ) c × × l2(t)∫ x−ct f ( x′, t+ x′ c −x c ) + k 2 Φ0 − ( ξ0, ξ0+2x′ ) √ l2 ( t′ ) − x′ dx′, (40) where Φ0 −(ξ0, ξ0+2x′) is given by (39). From (37) we obtain that u− = P− = 2K π √ l2 ( t ) − x 1 − l̇22 ( t ) /c2 , x < l2(t). (41) The Irvin’s condition [2] gives K2 π ρa√ 1 − l̇22(t)/c 2 = 2γ′, (42) where γ′ is the surface energy of opening of the crack. In the problem for a constant traction on the crack f=const the Eq. (25) leads to the following expressi- on: v+ =− 1 π 1√ x−l2 ( t2 ) l2(t2)∫ x−ct √ l2 ( t2 ) −x′ x−x′ dx′− − k 2π 1√ x−l2(t2) l2(t)∫ x−ct Φ0 − ( ξ0, η ′) √ l2 ( t2 ) −x′ x−x′ dx′. (43) Due to Eq. (39) Φ0 −(ξ0, η ′) can be calculated in form Φ0 − ( ξ0, η ′)= 1 π f { √ ξ0−ξa(η′) √ η′+ξa ( η′ ) + + ( ξ0+η′ ) arctg √ ξ0 − ξa ( η′ ) η′+ξa ( η′ ) } for η′ > ηe (44) and Φ0 − ( ξ0, η ′) = −f 2 ( ξ0 + η′ ) for η′ < ηe. (45) Here, η′=ct′+x′, ξ0=ct′−x′=ct−x, ξa ( η′ ) =ct′3−l2 ( t′3 ) , ct′3+l2 ( t′3 ) =ct′+x′. (46) Using Eq. (43) and passing to physical variables we obtain for the stress distribution out from crack A. G. Bagdoev, S. G. Sahakyan 65 ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 a b Fig. 2. Calculations after Eq. (48), giving the stresses out of the crack for constant velocity of the crack (a) l̇(t)=v and constant traction f on the crack (b); x0 =x/ct, M =v0/c: M <1, k̃=kct, x′ =ctξ that v+ = − 2 π f√ x− l2 ( t2 ) {√ l2 ( t2 ) − x+ ct− − √ x− l2 ( t2 ) arctg √ l2 ( t2 ) − x+ ct x− l2 ( t2 ) } + + k π2 f√ x− l2 ( t2 ) l2(t2)∫ α {√ l2 ( t′3 ) − x′× × √ ct− x+ 2x′ − l2 ( t′3 ) + ( ct− x+ x′ ) × × arctg √ l2 ( t′3 ) − x′ ct− x+ 2x′ − l2 ( t′3 ) } × × √ l2 ( t2 ) − x′ x− x′ dx′ + k 2π f√ x− l2 ( t2 ) × × α∫ x−ct ( ct− x+ x′ ) √ l2 ( t2 ) − x′ x− x′ dx′, (47) where α=(ηe+x−ct)/2. As it is seen from Eq. (47), the stress out of crack has the same singularity near the crack’s edge x≈ l2(t), as in homogeneous case, but with the stress intensity coefficient essentially depending from inhomogeneity. 4. CASE OF ARBITRARY VALUE OF INHOMOGENEITY In the case of non-small k Eq. (5) can be solved in the form of the Laplace and the Fourier transformati- ons: UL = ∞∫ 0 e−st′u dt′; Ul ( x, y1, s ) = 1 2π ∞∫ −∞ ULF e −i(α1x+βy1)dα1. (48) Here ULF is the Fourier transform for UL(x, 0, s); (1/ρ)∂ρ/∂y1 =k. Substituting Eq. (48) into Eq. (5) we obtain β = −i k 2 − i √ k2 4 + α2 1 + s2 c2 . (49) Introducing the function ψ=∂u/∂y1 we follow to the relation between the integral transformants of ψ and u: ψLF = −iβULF , ULF = SLFψLF , SLF = − ( k 2 + √ k2 4 + α2 1 + s2 c2 )−1 . (50) The originals are written as S ( x, t ) = 1 4π2i σ+i∞∫ σ−i∞ estds ∞∫ −∞ e−iα1xSLF dα1. (51) On the boundary y1 =0 the following relation between u(x, t) and derivative (∂u/∂y1)|y1=0 =ψ(x, t) is valid: u ( x, t ) = ∫ ∫ ψ ( x′, t′ ) S ( x− x′, t− t′ ) dx′dt′, (52) and the integration procedure should be carried out over the complete domain s0+s1+s2 (see fig. 1). Now 66 A. G. Bagdoev, S. G. Sahakyan ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 for x<l2(t) it can be written that u ( x, t ) = = 1 2c ξa(η0)∫ ξe dξ′ η2(ξ ′)∫ −ξ′ f1 ( ξ′, η′ ) S1 ( ξ0−ξ′, η0−η′ ) dη′+ + 1 2c ξa(η0)∫ ξe dξ′ η0∫ η2(ξ′) ψ1 ( ξ′, η′ ) S1 ( ξ0−ξ′, η0−η′ ) dη′+ + 1 2c ξ0∫ ξa(η0) dξ′ η0∫ −ξ′ f1 ( ξ′, η′ ) S1 ( ξ0−ξ′, η0−η′ ) dη′, (53) where f1(ξ ′, η′)=f(x′, t′) is given in s0, s2 behind the crack’s edge; ψ1(ξ ′, η′)=ψ(x′, t′) is a value of (∂u/∂y1)|y1=0 for x′>l2(t ′), i. e., out of the crack, which in the order of k is given by Eq. (25) and S1(ξ ′, η′)=S(x′, t′). So, the solution for u in the domain x<l2(t) is reduced to determination of the function S(x, t), gi- ven by Eqs (50) and (51). From the boundary condition u=0 for x>l2(t) and Eq. (52), as in Eq. (8), for |ξ0|> |ξa(η0)| we have the following: ξ0∫ ξe dξ′ η2(ξ ′)∫ −ξ′ f1 ( ξ′, η′ ) S1 ( ξ0−ξ′, η0−η′ ) dη′+ + ξ0∫ ξe dξ′ η0∫ η2(ξ′) ψ1 ( ξ′, η′ ) S1 ( ξ0−ξ′, η0−η′ ) dη′ = 0. (54) However, in contrary to Eq. (27), in which S1 ( ξ0 − ξ′, η0 − η′ ) = − c π √( ξ0 − ξ′ )( η0 − η′ ) , as it will be shown later, for arbitrary k 6=0 the multi- plies (ξ0−ξ′)−1/2 and (η0−η′)−1/2 are not separated. Therefore, the integral over the domain s2, which contains complex solution ψ1 given by Eq. (25), can not be excluded. This fact distinguishes the problem with k 6=0, from the problem for homogeneous medi- um [2,5] (its solution is given by Eqs (32), (35)). It should be noted that Eq. (53) is valid behind the crack’s edge, i. e., for |ξ0|< |ξa(η0)|, while Eq. (54) – ahead the crack’s edge, i. e., for |ξ0|> |ξa(η0)|. That is why this last expression can not be used for si- mplification of Eq. (53). However, later it will be shown that for the points close to the edge (x≈ l2(t)) Eq. (54) still can be used for simplificationof Eq. (53). To calculate S(x, t) from Eqs (50) and (51) the complex s=pc √ k2/4+α1 should be introduced instead of s. Moreover, integration with respect to s should be replaced by the Laplace integral with respect to p, multiplied by c √ k2/4+α1. Note that the inverse Laplace transform from g ( p ) = − ( k 2 + √ k2 4 + α2 1p )−1 is f ( t′ ) = −c exp  − k c t′ 2 √ k2 4 + α2 1   . Additionally, in view of [8, Eq. (38) on page 123] g (√ p2 + 1 ) = f ( t′ ) − t′∫ 0 J1 ( u ) f ( t′ 2 − u2 ) du′; t′ = c √ k2 4 + α2 1 t the inverse Laplace transform for SLF gives the following: SF = −ce− kc 2 t+ + c c √ k2 4 +α2 1 t∫ 0 J1 ( u ) exp  − k 2 √ t′2 − u2 √ k2 4 + α2 1   du. (55) After substitution u=v √ k2/4+α2 1 we have SF = −ce− kc 2 t + c √ k2 4 + α2 1 × × ct∫ 0 J1 ( v √ k2 4 + α1 ) exp ( −k 2 √ c2t2 − v2 ) dv. (56) Accounting the well known property of the Bessel’s functions J1(x)=−J ′ 0(x), and integrating by parts, one can obtain SF = −cJ0 ( ct √ k2 4 + α2 1 ) + + kc 2 ct∫ 0 J0 ( v √ k2 4 + α2 1 ) × × v√ c2t2 − v2 exp ( −k 2 √ c2t2 − v2 ) dv. (57) A. G. Bagdoev, S. G. Sahakyan 67 ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 Again, replacing √ c2t2−v2 =u gives the following relation: SF = −cJ0 ( ct √ k2 4 + α2 1 ) + + kc 2 ct∫ 0 J0 ( √ c2t2 − v2 √ k2 4 + α2 1 ) e− k 2 udu. (58) The function SF is even on α1. This allows to replace the exponential Fourier transform on the cosi- ne transform. So, in view of [8, Eq. (35) on page 57], one can obtain the final formula for the function in physical domain: S ( x, t ) = −cH ( ct − x ) π × × { cos ( k/2 √ c2t2 − x2 ) √ c2t2 − x2 − −k 2 √ c2t2−x2∫ 0 cos ( k/2 √ c2t2 − u2 ) √ c2t2 − x2 − u2 e− k 2 udu } . (59) Moreover, the function S1(ξ0−ξ′, η0−η′) in Eq. (53) is given by the expression: S1 ( ξ0 − ξ′, η0 − η′ ) = − c π ( 1 T cos kT 2 − −k 2 T∫ 0 cos ( k/2 √ T 2 − u2 ) √ T 2 − u2 e− k 2 udu ) , (60) where T = √( ξ0 − ξ′ )( η0 − η′ ) . (61) For small k the the first order approximation from Eqs (60) and (61) gives that S1 ( ξ0 − ξ′, η0 − η′ ) = − c π ( 1 T − kπ 4 ) . (62) Let us put in relation (54) that ψ1 = v0 + + v1 +, where v0 + is the solution for homogeneous medium (k=0) given by (22), in which v− is replaced for f1(ξ0, η ′). For this addendum Eq. (27) is fulfilled. Retaining in Eq. (54) terms of the k-th order we obtain the following: − kπ 4 ξ0∫ ξe dξ′ η2(ξ ′)∫ −ξ′ f1dη ′− − kπ 4 ξ0∫ ξe dξ′ η0∫ η2(ξ′) v0 + ( ξ′, η′ ) dη′+ + ξ0∫ ξe dξ′ η0∫ η2(ξ′) v1 + ( ξ′, η′ ) T dη′ = 0. (63) So, from Eqs (53) and (62) the solution precise to the first order of k can be written: u = − 1 2π ξa(η0)∫ ξe dξ′ η2(ξ ′)∫ −ξ′ f1 ( ξ′, η′ ) T dη′+ + k 8 ξa(η0)∫ ξe dξ′ η2(ξ′)∫ −ξ′ f1 ( ξ′, η′ ) dη′− − 1 2π ξa(η0)∫ ξe dξ′ η0∫ η2(ξ′) ( v0 + + v1 + )( 1 T − kπ 4 ) dη′+ + 1 2c ξ0∫ ξa(η0) dξ′ η0∫ −ξ′ f1S1dη ′. (64) It worth noting that the first addendum in right-hand side of Eq. (64) and the addendum with v0 +, both having the zeroth order of k, are cancelled (see (27)). From Eq. (64), accounting for Eq. (63), we obtain for the terms of order of k: u ≈ k 8 ξa(η0)∫ ξ0 dξ′ η2(ξ′)∫ −ξ′ f1dη ′ + k 8 ξa(η0)∫ ξ0 dξ′ η0∫ η2(ξ′) v0 +dη ′− − 1 2π ξa(η0)∫ ξ0 dξ′ η0∫ η2(ξ′) v1 + T dη′ + 1 2c ξ0∫ ξa(η0) dξ′ η0∫ −ξ′ f1S1dη ′. (65) Near the crack’s edge x≈ l2(t), ξ0≈ξa(η0) only the terms of order √ ξ0−ξa(η0) should be retained. Therefore, the first two terms in the right-hand side of Eq. (65) can be dropped out. This gives u ≈ 1 2π ξ0∫ ξa(η0) dξ′ η0∫ η2(ξ′) v1 + ( ξ′, η′ ) T dη′+ + 1 2c ξ0∫ ξa(η0) dξ′ η0∫ ξ′ f1S1dη ′. (66) 68 A. G. Bagdoev, S. G. Sahakyan ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 Due to Eqs (22) and (26) we find, keeping the terms of order of k, that v1 + ( ξ′, η′ ) = − k 2π √ η′ − η2 ( ξ′ ) × × η2(ξ′)∫ −ξ′ Φ0 − ( ξ′, η′′ ) √ η2 ( ξ′ ) − η′′ η′ − η′′ dη′′. Substituting this relation into Eq. (66), interchangi- ng the integration order on η′ and η′′ and, finally, accounting that ξ′≈ξ0, η2(ξ ′)≈η0, we obtain that near the crack’s edge u=− k 4π ξ0∫ ξa(η0) dξ′√ ξ0−ξ′ η0∫ −ξ0 Φ0 − ( ξ0, η ′) dη′√ η0−η′ − − 1 2π ξ0∫ ξa(η0) dξ′√ ξ0−ξ′ η0∫ −ξ0 f1 ( ξ0, η ′) √ η0−η′ dη′. (67) In the last term of Eq. (67) it is used that ξ′≈ξ0. Moreover, in accordance with Eq. (61) the second addendum in Eq. (66) is the same that for homogeneous medium. The same expression is obtained from the solution of the first order of k given by Eq. (30). So values of u=Φ−(ξ0, η0) obtained by two methods coincide near the crack’s edge. For arbitrary k the relations (53) and (54) are valid. They keep true for different ξ0, but for (ξ0, η0), taken near the crack’s edge, one can believe that both (53) and (54) relations hold. This gives the following: u ( x, t ) = − 1 2π ξ0∫ ξa(η0) dξ′ η2(ξ ′)∫ −ξ′ f1S1dη ′− − 1 2c ξ0∫ ξa(η0) dξ′ η0∫ η2(ξ′) ψ1S1dη ′ + 1 2π ξ0∫ ξa(η0) dξ′ η0∫ −ξ′ f1S1dη ′. Let us denote the value of v+ for k=0 as v0 +. Then, accounting for equalities ψ1=v+, v+ =v0 ++v1 + and using the approximation S1(ξ0−ξ′, η0−η′) at ξ0≈ξa(η0) (see Eq. (62) under T ≈0), we can drop the small quantities of order of (ξ0−ξa(η0)). This procedure leads to Eq. (66). Therefore, the soluti- on for u(x, t) near the crack’s edge formally coincide with the solution for the first order of k. Although, it should be mentioned that v1 +(ξ′, η′) may differ from the similar value for the case of the small inhomogeneity. Besides calculation of the displacement on the crack, the function ψ(x, t)=(∂u/∂y1)|y1=0 =ψ+ out of the crack should be found. Following the Eq. [1,4] and using the expressions using denotions (12) one can write the solution for u, ψ in the form u− ( x, t ) = S− ∗ ∗ [( S+ ∗ ∗ψ− − P ′ − ∗ ∗u+ ) × ×H ( l2 − x )] ; (68) ψ+ ( x, t ) = −P+ ∗ ∗ [( S+ ∗ ∗ψ− − P ′ − ∗ ∗u+ ) × ×H ( x− l2 )] , (69) where l2 = l2(t); H(x) is a step function; asterisks denote a convolution on x and t; S±(x, t) and P ′ ±(x, t) are respectively the originals of the functi- ons SLF± and P ′ LF±, which represent factorization of the functions SLF and P ′ LF =1/SLF . Finally, according to [7,9] we obtain the following expressions: SLF = SLF±SLF−; SLF± = ± 1√ α1 ± √ γ × × exp    1 2πi ∓∞∫ ∓√ γ ln 2 √ γ+α′2 1+k 2 √ γ+α′2 1−k dα′ 1 α′ 1−α1    , (70) where γ=k2/4+s2/c2. The next step is to find the originals S±(x, t) according to Eq. (51). By the same way the originals P ′ ±(x, t) can be determined. The obtained solution for ψ+(x, t) see Eqs (51), (69), (70)) is very complex. Therefore, it is more sui- table to use the small parameter solution (25) for the first approximation. As it is seen from the solutions (25), (30) and (30), influence of the inhomogeneity on the solution as near the crack’s edge, as along the whole x-axis is essential. 5. SOLUTION OF THE PROBLEM FOR DI- SPLACEMENTS GIVEN ON THE CRACK’S FACES It should be noted that the problem considered in §1 is the antisymmetric one, for which same tractions τ−yz are given on the crack’s faces and the displacements have opposite signs. Correspond- ing symmetric problem implies the stresses having opposite signs and the same displacements imposed on the crack’s faces. General case of different stresses and displacements on the crack’s faces can be A. G. Bagdoev, S. G. Sahakyan 69 ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 represented as a sum of these two solutions. So, instead of Eq. (9) we can put the following: y1 = 0; u− = Φ1 ( t, x ) , x < l2 ( t ) , ψ+ = 0, x > l2 ( t ) . (71) Because of ψ+ = ∂u ∂y1 ∣∣∣∣ y1 = v+ − k 2 u+ one can rewrite Eq. (71) in the form y1 = 0; u = P− = Φ1 ( x, t ) , v+ = k 2 u+. (72) In contrast to Eqs (68), (69), the convolution method [1] can be applied to the functions P , v. This gives P+ = S̃+ ∗ ∗ [( S̃− ∗ ∗ v+ − P̃+ ∗ ∗P− ) × ×H ( x− l2 )] , (73) v− = −P̃− ∗ ∗ [( S̃− ∗ ∗ v+ − P̃+ ∗ ∗P− ) × ×H ( l2 − x )] . (74) Taking that v=∂P/∂y1 one can obtain from Eq. (10) that PLF = S̃LF vLF ; S̃LF = − (√ α2 1 + s2 c2 )−1 , (75) instead of Eq. (50). Besides, Eq. (75) there is another condition: P̃LF =1/S̃LF . Note that for homogeneous medium the original functions S̃(x, t) and P̃ (x, t), corresponding to S̃LF and P̃LF , are found from Eq. (4), and their factori- zation yields S̃+ ( x, t ) = −H ( x ) δ ( t− x/c ) √ π √ x ; P̃+ ( x, t ) = δ ( t− x/c ) 2 √ π H ( x ) x3/2 . (76) Since S̃LF+S̃LF− = S̃LF corresponds to the origi- nal, given by Eq. (59) for k=0, the first addendum in (73) is as follows: S̃+ ∗ ∗ ( S̃− ∗ ∗ v+ ) = − c π ∫ ∫ v+dx ′dt′√ T = = − ck 2π ∫ ∫ u+dx ′dt′√ T . (77) Substituting Eq. (76) into Eq. (73) and carry- ing out lengthy calculations one can obtain the dis- placements out of the crack, corresponding to the first order of k: P+ ( t, x ) =− ck 2π ∫ ∫ S0 P 1 + ( t′, x′ ) √ T dx′dt′+P 1 + ( t, x ) , (78) where P 1 + ( t, x ) = √ x− l2 ( t0 ) π √ c t0∫ 0 Φ1 [ τ, x− c ( t− τ )] ( t− τ )√ t0 − τ dτ (79) and l2(t0)−x+ct=ct0. Formula (79) gives known behavior of the dis- placement near the crack’s edge ∼ √ x−l2(t) for hte boundary function Φ1(t, x), being equal to zero for x= l2(t). Moreover, the integral in Eq. (79) is convergent for x= l2(t), t0≈ t. The stresses on the crack can be found from Eq. (74). However, more simple way is to obtain V−(t, x)=∂P/∂y1−(k/2)P accounting that V satisfies Eq. (10) and the boundary conditions, due to Eq. (72), are of the order of k: y1 = 0, ∂V ∂y1 = f ( t, x ) − k 2 V, x < l2 ( t ) , V = 0, x > l2 ( t ) , (80) where f ( t, x ) = 1 c2 ∂2Φ1 ∂t2 − ∂2Φ1 ∂x2 . Then from Eq. (20), written for V (t, x), one can obtain that V ( t, x ) =− c π ∫∫ f ( t′, x′ ) − ( k/2 ) V ( t′, x′ ) √ T dx′dt′. (81) Putting k=0 in Eq. (81) leads to homogeneous solution V 0(t, x), which can be substituted in Eq. (81) instead of V (t′, x′). Because of V =0 for x>l(t2) the integrand in Eq. (81) is the same as that in Eq. (30). Hence, after introducing of characteristic variables we find that V1 ( ξ0, η0 ) = − 1 2π ξ0∫ ξa(η0) dξ′√ ξ0 − ξ′ × × η0∫ −ξ′ f1 ( ξ′, η′ ) − ( k/2 ) V 0 − ( ξ′, η′ ) √ η0 − η′ dη′, (82) where f1(ξ ′, η′)=f(t′, x′). Following Eq. (39) for η′>ηe we obtain V 0 − ( ξ′, η′ ) =− 1 2π ξ′∫ ξa(η′) dξ′′√ ξ′ − ξ′′ η′∫ −ξ′′ f1 ( ξ′′, η′′ ) √ η′ − η′′ dη′′. (83) 70 A. G. Bagdoev, S. G. Sahakyan ISSN 1028 -7507 Акустичний вiсник. 2002. Том 5, N 4. С. 61 – 71 As Eq. (39) shows, for η′<ηe the integration with respect to ξ′′ should be performed within the limits (−η′, ξ′). Using the formula ( 1 c2 ∂2 ∂t2 − ∂2 ∂x2 ) 1√ T = T−3/2 one can obtain V− ( ξ0, η0 ) = = − 1 2π ξ0∫ ξa(η0) dξ′ ( ξ0 − ξ′ )3/2 η0∫ −ξ′ Φ1 ( ξ′, η′ ) ( η0 − η′ )3/2 dη′+ + k 4π ξ0∫ ξa(η0) dξ′√ ξ0 − ξ′ η0∫ −ξ′ V 0 − ( ξ′, η′ ) √ η0 − η′ dη′, where only finite part of the integral with respect to ξ′ is retained. For the function Φ1(t ′, x′), which behaves at the edge of the crack as Φ1 ( t′, x′ ) = B ( t′, x′ )[ l2 ( t′ ) − x′ ) , the integral with respect to η′ is finite for x′= l2(t′), so, usual singularity for stresses is observed: V− ( t′, x′ ) ∼ 1√ l2 ( t ) − x . CONCLUSION The problem on the antiplane crack propagating with arbitrary velocity in anisotropic inhomogeneous elastic media is considered. The solution is obtai- ned by method of integral equations developed in the theory of wing. For wide class of inhomogeneities the solution is obtained in closed analytical form. The displacements on the crack’s faces and the stresses out of the crack are obtained. It is shown that the inhomogeneity essentially effects the solution. 1. Сарайкин В. А., Слепян Л. И. Плоская задача о динамике трещины в упругом теле // Известия АН СССР. МТТ.– 1979.– N 4.– С. 54–73. 2. Aki K. and Richards P. J. Quantitative seismology: Theory and methods: in 2 volumes.– San Francisco: W. H. Freeman & Co., 1980. 3. Костров Б. В. Неустановившаяся трещина про- дольного сдвига // ПММ.– 1966.– 30, вып. 6.– С. 1048–1050. 4. Поручиков В. Б. Методы динамической теории упругости.– М.: Наука, 1986.– 328 с. 5. Красильщикова Е. А. Тонкое крыло в сжимаемом потоке.– М.: Наука, 1978.– 223 с. 6. Багдоев А. Г., Мовсисян Л. А. Приближенное ре- шение антиплоской анизотропной задачи о рас- пространении трещины // Механика. Ереван. гос. ун-т.– 1989.– 7.– С. 3–7. 7. Noble B. Methods based on the Wiener – Hopf techni- que for the solution of partial defferential equations.– London: Pergamon Press, 1958.– 246 p. 8. Bateman H., Erdélyi A. Tables of Integral Transforms. Vol. 1.– New York: McGraw-Hill, 1954.– 343 p. 9. Багдоев А. Г., Мовсисян Л. А. Задачи о трещинах в вязкоупругой среде.– Изв. АН Арм. ССР. Меха- ника: 1987, N 40.– 3–10 с. 10. Гавриленко В. В. Плоская симметричная задача погружения затупленного твердого тела в жид- кость с учетом отрыва // Акуст. вiсн.– 1998.– 1, N 3.– С. 24–29. 11. Кубенко В. Д. Проникание упругих оболочек в сжимаемую жидкость.– К.: Наук. думка, 1981.– 160 с. A. G. Bagdoev, S. G. Sahakyan 71