A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay
Предложен критерий нестабильности и локализации повреждений в балке из однородного ламината T300/914 для моделирования развития повреждений с учетом эффекта задержки. Результаты, полученные для одномерного случая, свидетельствуют об одновременном появлении зоны разрушения по всей конструкции. Предло...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2011
|
Schriftenreihe: | Проблемы прочности |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/95206 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay / A. Boutaous, M. Elchikh, M. Abdelouahab, A. Belaidi // Проблемы прочности. — 2011. — № 5. — С. 50-58. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-95206 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-952062016-02-18T03:02:00Z A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay Boutaous, A. Elchikh, M. Abdelouahab, M. Belaidi, A. Научно-технический раздел Предложен критерий нестабильности и локализации повреждений в балке из однородного ламината T300/914 для моделирования развития повреждений с учетом эффекта задержки. Результаты, полученные для одномерного случая, свидетельствуют об одновременном появлении зоны разрушения по всей конструкции. Предложено решение, которое базируется на мезомоделировании композитов. Полученные с помощью предложенного подхода расчетные результаты позволяют выполнить точный прогноз потери устойчивости образца при ухудшении параметров его жесткости. Запропоновано критерій нестабільності і локалізації пошкоджень у балці з однорідного ламіната Т300/914 для моделювання розвитку пошкоджень з урахуванням ефекту затримки. Результати, що отримані для одновимірного випадку, свідчать про те, що зона руйнування по всій конструкції виникає одночасно. Запропоновано розв’язок, що базується на мезомоделюванні композитів. Отримані за допомогою запропонованого підходу розрахункові дані дозволяють виконати точний прогноз втрати стійкості зразка при погіршанні параметрів його жорсткості. 2011 Article A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay / A. Boutaous, M. Elchikh, M. Abdelouahab, A. Belaidi // Проблемы прочности. — 2011. — № 5. — С. 50-58. — Бібліогр.: 18 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/95206 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Boutaous, A. Elchikh, M. Abdelouahab, M. Belaidi, A. A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay Проблемы прочности |
description |
Предложен критерий нестабильности и локализации повреждений в балке из однородного ламината T300/914 для моделирования развития повреждений с учетом эффекта задержки. Результаты, полученные для одномерного случая, свидетельствуют об одновременном появлении зоны разрушения по всей конструкции. Предложено решение, которое базируется на мезомоделировании композитов. Полученные с помощью предложенного подхода расчетные результаты позволяют выполнить точный прогноз потери устойчивости образца при ухудшении параметров его жесткости. |
format |
Article |
author |
Boutaous, A. Elchikh, M. Abdelouahab, M. Belaidi, A. |
author_facet |
Boutaous, A. Elchikh, M. Abdelouahab, M. Belaidi, A. |
author_sort |
Boutaous, A. |
title |
A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay |
title_short |
A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay |
title_full |
A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay |
title_fullStr |
A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay |
title_full_unstemmed |
A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay |
title_sort |
computational strategy for the localization and fracture of laminated composites. part 1. development of a localization criterion adapted to model damage evolution time-delay |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2011 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/95206 |
citation_txt |
A Computational Strategy for the Localization and Fracture of Laminated Composites. Part 1. Development of a Localization Criterion Adapted to Model Damage Evolution Time-Delay / A. Boutaous, M. Elchikh, M. Abdelouahab, A. Belaidi // Проблемы прочности. — 2011. — № 5. — С. 50-58. — Бібліогр.: 18 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT boutaousa acomputationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay AT elchikhm acomputationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay AT abdelouahabm acomputationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay AT belaidia acomputationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay AT boutaousa computationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay AT elchikhm computationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay AT abdelouahabm computationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay AT belaidia computationalstrategyforthelocalizationandfractureoflaminatedcompositespart1developmentofalocalizationcriterionadaptedtomodeldamageevolutiontimedelay |
first_indexed |
2025-07-07T01:56:21Z |
last_indexed |
2025-07-07T01:56:21Z |
_version_ |
1836951411648102400 |
fulltext |
UDC 539.4
A Computational Strategy for the Localization and Fracture of
Laminated Composites. Part 1. Development of a Localization
Criterion Adapted to Model Damage Evolution Time-Delay
A. Boutaous,
a
M. Elchikh,
a
M. Abdelouahab,
a
and A. Belaidi
b
a U.S.T. Oran, Algeria
b E.N.S.E.T. Oran, Algeria
ÓÄÊ 539.4
Âû÷èñëèòåëüíàÿ ìåòîäèêà ëîêàëèçàöèè ðàçðóøåíèÿ ëàìèíàòîâ.
Ñîîáùåíèå 1. Ðàçðàáîòêà êðèòåðèÿ ëîêàëüíîãî ïîâðåæäåíèÿ äëÿ
ìîäåëèðîâàíèÿ ðàçâèòèÿ ïîâðåæäåíèÿ ñ ó÷åòîì ýôôåêòà çàäåðæêè
À. Áóòàó
à
, Ì. Ýëü÷èõ
à
, Ì. Àáäåëóõàá
à
, À. Áåëàéäè
á
à Óíèâåðñèòåò íàóêè è òåõíîëîãèè, Îðàí, Àëæèð
á Âûñøàÿ òåõíîëîãè÷åñêàÿ øêîëà, Îðàí, Àëæèð
Ïðåäëîæåí êðèòåðèé íåñòàáèëüíîñòè è ëîêàëèçàöèè ïîâðåæäåíèé â áàëêå èç îäíîðîäíîãî
ëàìèíàòà T300/914 äëÿ ìîäåëèðîâàíèÿ ðàçâèòèÿ ïîâðåæäåíèé ñ ó÷åòîì ýôôåêòà çàäåðæêè.
Ðåçóëüòàòû, ïîëó÷åííûå äëÿ îäíîìåðíîãî ñëó÷àÿ, ñâèäåòåëüñòâóþò îá îäíîâðåìåííîì ïîÿâ-
ëåíèè çîíû ðàçðóøåíèÿ ïî âñåé êîíñòðóêöèè. Ïðåäëîæåíî ðåøåíèå, êîòîðîå áàçèðóåòñÿ íà
ìåçîìîäåëèðîâàíèè êîìïîçèòîâ. Ïîëó÷åííûå ñ ïîìîùüþ ïðåäëîæåííîãî ïîäõîäà ðàñ÷åòíûå
ðåçóëüòàòû ïîçâîëÿþò âûïîëíèòü òî÷íûé ïðîãíîç ïîòåðè óñòîé÷èâîñòè îáðàçöà ïðè óõóä-
øåíèè ïàðàìåòðîâ åãî æåñòêîñòè.
Êëþ÷åâûå ñëîâà: ïðîãíîçèðîâàíèå, ëîêàëèçàöèÿ, ýôôåêò çàäåðæêè, ïîâðåæ-
äåíèå, ìåçîìàñøòàáíîå ìîäåëèðîâàíèå, ÷èñëåííûé ðàñ÷åò, êîìïîçèòû.
Introduction. From a theoretical point of view, simulation of localization and
fracture of layered structures can be described in numerical specific criteria [1–3].
The study of stability and uniqueness of the solution for structures governed by the
laws of elasto-plastic behavior has been studied by [4]. Following these works and
those of [5], a first possibility has been to establish criteria of uniqueness and
localization in order to define a field of use of behavior laws. They have been
developed for the non-associated elasto-plastic laws [6], aimed to obtain a criteria
of a possible onset of microcracks.
For composite laminates, the ultimate point of rupture is usually close to the
point determined using the criteria of uniqueness, this criterion corresponds to the
point of instability and can be the endpoint from which there is a potential
bifurcation of the solution [7]. The localization criterion [8] allows one to
determine, for materials governed by the time independent behavior laws, the point
at which localized solutions appear. We note the absence of internal length in these
© A. BOUTAOUS, M. ELCHIKH, M. ABDELOUAHAB, A. BELAIDI, 2011
50 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5
models from the classical mechanics of damage and can not properly simulate the
phase fracture [1].
We show in this first part, that evolution law for damage delay allows one to
define a rupture zone, this property is essential to the simulation phase of fracture
and is highlighted in the case of a beam in tension.
1. Bibliographic Aspect of Localization Limiters. Extending the calculations
beyond the critical points defined by conventional criteria creates difficulties
caused by the loss of uniqueness and localization of strain. To follow a solution
beyond the critical points, one essential step is to introduce localization limiters.
The laws of behavior called special (limiting localization) can lead the calculations
until failure. With these type of laws, it is possible to obtain a fracture zone in the
framework of damage mechanics.
One approach to limit the phenomenon localization is to use a non-local
model [9], whether in damage, in velocity localization damage or in dissipation.
Another approach to regularization is to use a mechanical formula taking into
account the higher order terms in the calculation of strains. In the one-dimensional
case [6], taking into account the second order term in the strain, allows one to
regularize the original problem. The theory of second gradient is also used as a
localization limiter [10].
The adjustment can also be obtained by using a model in which the
characteristic lengths are used [11]. This method is used by authors [12] for
behavior laws of elasto-plastic softening.
All these methods of adjustments compensate for the lack of models by
introducing local classical computations in terms of length. These lengths must
control the phenomenon of localization and are introduced directly into the
constitutive law.
In this work, we used the mesomodelisation developed by [1, 13, 14], which
has internal dimensions related to internal characteristics of composites. The model
naturally introduces the thickness of the basic folds, thereby establishing a length,
in the plane of each layer. The model with delay effect allows one to fix the
missing dimensions.
1.1. Modeling of the Elementary Layer. The model is based on an analysis of
the microlayer, taking into account the micromechanisms of damage in structures.
The ply is considered homogeneous with orthotropic elastoplastic behavior
damaged. At the mesolevel different mechanisms of damage in laminated composite
structures are well described by simple models of behavior [3, 15]. The mechanisms
considered are: transverse microcracking of the matrix, the fiber debonding and
inelastic deformation of the matrix. This modeling is adapted to the ply composed
of a single-direction carbon-epoxy fiber type T300/914 (E1
0 150000� ÌÐà,
E2
0 10800� MPa, G12 5800� MPa, �12
0 0 32� . , b �2 5. , Y0 0 0961� . MPa,
Yc �13 6161. MPa, � �Ys 0 47. MPa, and � � � �15 10 4. MPa �1).
1.2. Strain Energy of the Elementary Layer. The strain energy of the layer is
split into a traction power and energy of compression to take account of the
unilateral aspect of model behavior. The kinematics of damage uses three scalar
damage variables noted d , �d , and dF , respectively, related to the collapse of
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5 51
A Computational Strategy for the Localization and Fracture ...
shear stiffness, tensile and transverse rupture of the fibers. The damage is
considered constant along the thickness of the monolayer
E
d E E E
D
cp
F
�
�
�
� �
�
1
2 1
11
2
1
0
11
1
0
21
0
2
0
12
0
( )
( )� � � � �
E1
0 11 22
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �
�
�
� �
�
�
�
�
�
�
�
1
2 1 1
22
2
2
0
22
2
2
0
12
2
12
2
� � �
( ) ( )d E E d G
�
�
, (1)
where E
D
cp is the strain energy associated with plane stress, “0” designates the
initial quantities and �
X is the positive part of X ,
� �
� � �
X X X
X X
if
if
0
0 0
,
.
The behavior of fiber is linear elastic brittle in tension and nonlinear elastic in
compression in the direction of the fibers [16]. A stiffness loss of 30% of the
longitudinal modulus was observed near the rupture for a T300/914. The
consideration of this phenomenon is determined from the function �:
� �
� � � �
�
( )
[ ln( )]
.� � �
� �
� � �
11
11 11
2
2 1
(2)
This function is chosen such that the expression of the modulus compression is a
function of strain in the direction of fibers:
E Ec
1 1
0
111� � � �
( ),� � (3)
where � is a parameter identified as a four-points bending test.
The modeling layer allows to take into account the matrix degradation and
deterioration of the fiber-matrix. A remarkable property is that the crack grows
parallel to fibers [17]. This property may be taken into account at the microscale. A
calculation by asymptotic homogenization shows that the only moduli that are
affected by the transverse modulus E2
0 and shear modulus G12
0 [18].
The state laws are given by
�
�
��
ij
e D
e
ij d d d
E
F
�
�, ,
. (4)
Therefore, the elastic orthotropic damageable laws can be written in the two-
dimensional case as
A. Boutaous, M. Elchikh, M. Abdelouahab, and A. Belaidi
52 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5
�
� �
� �
� �
11
11
1
0
11
1
0
11
12
0
221
1 1
e
dF E E
�
�
�
� �
� � �
�
( ) E1
0
�
�
�
�
�
�
�
�
, (5)
�
� � � �
22
22
2
0
22
2
0
12
0
11
1
01 1
e
FE d E E d
�
�
�
� �
�
�
( ) ( )
, (6)
�
�
12
12
122 1
e
G d
�
�( )
. (7)
1.3. Evolution of Damage Variables. The evolution of damage, which is
governed by laws dependent on thermodynamic forces Y Yd d, ,� and YF coupled
respectively to internal scalar variables d d, ,� and dF , has an expression:
Y
d
E cst
G d
d D
e� �� �
��
�
�
�
�
�
| :
( )
,12
2
12
0 22 1
(8)
Y
d
E cst
E d
d D
e
�
� �� �
���
� �
�
�
�
�
| :
( )
,22
2
2
0 22 1
(9)
Y
d
E cstF
F
D
e� �� �
�
�
�| :
�
�
��
�
� �
�
1
2 1 2 22
11
2
1
0
11
2
1
21
0
2
0
12
0
( )d E E E EF
c
� � � �
1
0 11 22
�
�
�
�
�
�
�
� � . (10)
In general, the laws of damage evolution can be written as a function of the history
of loading time t: ED
e is the energy of the monolayer and �� X is the mean
value of X along the thickness of the monolayer,
d A Y Y t d A Y Y tt d d d t d d d| ( | ; | , ); | ( | ; | , )� � � � �� � � � � �� � � �� � . (11)
The laws of evolution Ad and Ad � of quasi-static type, depending on the type of
loading, are selected to meet the second law of thermodynamics.
2. Damage Model with Delay Effect. The laws of damage evolution time-
delay that express the evolution of damage is not instant over loading. There exists
in this type of model a characteristic time which, combined with a characteristic
speed, allows one to define a characteristic length.
Value of � , � ,d dF and ��d are scalar internal variables which represent the
speeds of damage. These are constants in the thickness of the layer, the thermo-
dynamic force that governs the damage evolution is
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5 53
A Computational Strategy for the Localization and Fracture ...
Y Y bYd d d�
� . (12)
The models with delay effect used in this article are as follows:
Model in the direction of the fibers
�d k F d d dF F F
n
F F� � � � �
1
1 1 1if otherwise (13)
with
F Y
Y Y
Y
F F
F F
FC
( ) �
�
�0 1 otherwise F YF F( ) .�1 (14)
Model along the shear plane
�d k F dd
n� � �
4
4 if d �1 and Y Yd s� �� otherwise d �1 (15)
with
F Y
Y Y
Y
d d
d
c
( ) �
�
�0 1 otherwise F Yd d( ) .�1 (16)
Model in the transverse direction to fiber
�� � � � � �
d k F dd
n
2
2 if ��d 1 and Y Yd s� �� otherwise � �d 1 (17)
with
F Y
Y Y
Y
d d
d
c
�
�
�
�
�
�( ) 0 1 otherwise F Yd d� �( ) .1 (18)
Here k k k n n1 2 4 1 2, , , , , and n4 are model parameters representing the material.
The parameters 1 ki are homogeneous in time characteristics. It should be noted
that when the rate of damage is very low, we get the expressions of the change
models without delay effect as statically identified.
2.1. Concept of the Localization Criterion for the Model with Delay Effect.
The idea of the method to develop a test of stability and localization is studied in
the neighborhood of the solution X 0 , the set of equations governing the mechanical
problem under consideration. To study stability, we add a disturbance u to the
solution X 0 . Then the set of equations is linearized near the solution X 0 , the
system resulting from linearization can be written as
�
�
u
t
M X u� ( ) ,0
where u represents the set of variables governing the problem considered in the
neighborhood of the solution X 0 , and M X( )0 is a matrix depending on the
54 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5
A. Boutaous, M. Elchikh, M. Abdelouahab, and A. Belaidi
solution of the undisturbed problem. The system admits a solution in the form
u x t u x t( , ) �( )exp( ).� � The criterion of stability and localization is derived from the
eigenvalue problem as follows: M X u u( ) � �.0 ��
The solutions to this problem are likely to increase risk of instability from a
given state, if the eigenvalues are positive � 0. The case of � �0 is the transition
from stability to instability.
2.2. Development of Criteria Appropriate to the Model with Delay Effect.
The criterion is developed in the case of a one-dimensional elastic beam
damageable-delay tensile loading subjected to forced displacement (Fig. 1). This
criterion gives a necessary condition of localization of strain and damage.
The equations governing the behavior of the beam in tension are given by
��
�x
�0, (19)
� ( )� � ,� � �� � �E d dEe e1 (20)
� ( , ),d f de� � (21)
where Eq. (19) is the equation that denotes the equilibrium, Eq. (20) is the
relationship between velocity and strain elastic strain, and Eq. (21) represents the
model with delay effect.
These equations are linearized around an equilibrium position noted “0”
�� �� � �� � �� ( ) � �
� ,� � � �E d E E de e e e1 0 0 0 (22)
�
�
��
��
�
�
�� | | .d
f f
d
d
e
e�
(23)
We search from an initial state noted “0” a perturbed solution of the above
equations, which can be written as follows for any variable “X ”:
X M t X M t X( , ) ( , ) ,�
0 � (24)
� �X M t X M t( , ) � ( )exp( ).� (25)
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5 55
A Computational Strategy for the Localization and Fracture ...
Fig. 1. Beam in tension-imposed displacement.
The variations are then written for all variables in this case:
� �u x t u x t( , ) �( )exp( ),� (26)
�� � �( , ) � ( )exp( ),x t x t� (27)
� �d x t d x t( , ) �( )exp( ).� (28)
By substituting these equations into the linearized equations of the beam problem
yields when � tends to zero:
� ( )
|
|
� .� �
�
��
�
�
�� �
�
!!
"
!
!
#
$
!!
%
!
!
E d E
f
f
d
e
e
e1 0 0 (29)
The case � �0 corresponds to the limiting case of transition to instability. This
hypothesis can be reduced to the study of behavior independent of time. The
instability criterion can be written as
d
f
f
d
e
e
0 01�
�
�
��
�
�
|
|
. (30)
The following three equations determine the plot of effort vs. displacement
and the point defined by the instability criterion
� �� �E d e
2 1( ) , (31)
� ,d k bE Y Y Y dc
e
c
n
� � �
2 2 02
2� (32)
d
bE
Yc
e� �1
2
2 � . (33)
3. Results and Discussion. In Fig. 2, curves 1, 2, and 3 represent the stress in
terms of strain respectively for n2 2� , 1, and 0.5. The criterion of instability (33) is
the peak of each curve representing the stress as a function of strain. We then plot
d vs. deformation � e . Value of d has been multiplied by a factor of 100 in Fig. 2.
The intersection points represent the criterion values, respectively, for n2 2� , 1,
and 0.5. Similar curves can be determined by varying the parameter k2 or the
loading speed.
56 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5
A. Boutaous, M. Elchikh, M. Abdelouahab, and A. Belaidi
It has been observed in this study that the model can also limit the speed of
damage. Furthermore, the sensitivity of parameters k2 and n2 of model with
delay effect has been studied in the case of a homogeneous beam in tension and
length of unit section. We note that for a strain rate of 0.1 s�1 and a weighting
factor n2 0 5� . the results of the model with delay effect does coincide with the
model without delay effect only for high values of k2 .
Conclusions. In this work, we verified the criterion of instability and localization
which implies that the beam is likely to break through localization of strain and
damage. In the case of the homogeneous beam (flawless) in static tensile, the
fracture occurs simultaneously throughout the structure. We will prove in the
second part of this work that we can correctly predict the moment of fracture when
the beam has a lack of rigidity, using a development that treats the provision
regulating the use of mesomodeling.
Ð å ç þ ì å
Çàïðîïîíîâàíî êðèòåð³é íåñòàá³ëüíîñò³ ³ ëîêàë³çàö³¿ ïîøêîäæåíü ó áàëö³ ç
îäíîð³äíîãî ëàì³íàòà Ò300/914 äëÿ ìîäåëþâàííÿ ðîçâèòêó ïîøêîäæåíü ç
óðàõóâàííÿì åôåêòó çàòðèìêè. Ðåçóëüòàòè, ùî îòðèìàí³ äëÿ îäíîâèì³ðíîãî
âèïàäêó, ñâ³ä÷àòü ïðî òå, ùî çîíà ðóéíóâàííÿ ïî âñ³é êîíñòðóêö³¿ âèíèêàº
îäíî÷àñíî. Çàïðîïîíîâàíî ðîçâ’ÿçîê, ùî áàçóºòüñÿ íà ìåçîìîäåëþâàíí³ êîì-
ïîçèò³â. Îòðèìàí³ çà äîïîìîãîþ çàïðîïîíîâàíîãî ï³äõîäó ðîçðàõóíêîâ³ äàí³
äîçâîëÿþòü âèêîíàòè òî÷íèé ïðîãíîç âòðàòè ñò³éêîñò³ çðàçêà ïðè ïîã³ðøàíí³
ïàðàìåòð³â éîãî æîðñòêîñò³.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5 57
A Computational Strategy for the Localization and Fracture ...
�e � �10 1
Fig. 2. Load vs. displacement.
1. L. Gornet, D. Lévêque, et L. Perret, “Modélisation, identification et simulation
éléments finis des phénomènes de délaminage dans les structures composites
stratifiées,” Mécanique & Industries, 1, No. 3, 267–276 (2000).
2. A. Boutaous, B. Peseux, L. Gornet, and A. Bélaidi, “A new modeling of
plasticity coupled with the damage and identification for carbon fibre composite
laminates,” Compos. Struct., 74, 1–9 (2006).
3. P. Ladevèze, “Multiscale modelling and computational strategies for composites,”
in: Proc. 2nd Int. Conf. on Testing, Evaluation and Quality Control of
Composites (TEQC 1987, Sept. 22–24, University of Surrey), pp. 189–193.
4. R. Hill, “A general theory of uniqueness and stability in elastic-plastic solids,”
J. Mech. Phys. Solids, 6, 236–249 (1958).
5. J. W. Rudnicki and J. R. Rice, “Conditions for the localization of deformation
in pressure-sensitive dilatant materials,” Ibid, 23, 371–394 (1975).
6. A. Boutaous, Modélisation du Comportement de l’Endommagement d’un
Stratifié Composite au Niveau des Boucles d’Hystérésis, Thèse de Doctorat,
USTO-MB, Oran (2007).
7. O. Allix, “Délamination et localisation,” Colloque National en Calcul des
Structures, Hermès (1993), 2, pp. 611–620.
8. J. R. Rice and J. W. Rudnicki, “A note on some features of the theory of
localization of deformation,” Int. J. Solids Struct., 16, 597–605 (1980).
9. G. Pijaudier-Cabot and A. Benallal, “Strain localization and bifurcation in a
nonlocal continuum,” Ibid, 30, 1761–1775 (1993).
10. R. De Borst, L. Sluys, H.-B. Mühlhaus, and J. Pamin, “Fundamental issues in
finite element analysis of localization of deformation,” Eng. Comput., 10,
99–121 (1993).
11. R. De Borst and H.-B. Mühlhaus, “Gradient-dependent plasticity: formulation
and algorithmic aspects,” Int. J. Num. Meth. Eng. Comput., 35, 521–539 (1992).
12. R. De Borst, “Simulation of strain localization: a reappraisal of the cosserat
continuum,” Eng. Comput., 8, 317–332 (1991).
13. P. Ladevèze, O. Allix, J.-F. Deü, and D. Lévêque, “A mesomodel for
localisation and damage computation in laminates,” Comput. Meth. Appl.
Mech. Eng., 183, 105–122 (2000).
14. P. Ladevèze and G. Lubineau, “An enhanced mesomodel for laminates based
on micromechanics,” Compos. Sci. Tech., 62, 533–541 (2002).
15. P. Ladevèze et G. Lubineau, “Pont entre les “micro” et “meso” mécaniques
des composites stratifies,” C.R. Mécanique, 331, 537–544 (2003).
16. J. F. Harper and T. O. Heumann, “The strain dependance of elastic modulus in
unidirectional composites,” Int. J. Numer. Meth. Eng., 60, 233–253 (2004).
17. E. Le Dantec, Contribution à la Modélisation du Comportement Mécanique
des Composites Stratifiés, Ph.D. Thèse, Université Paris 6 (1989).
18. F. Devries, H. Dumontet, G. Duvaut, and F. Lene, “Homogeneization and
damage for composites structures,” Int. J. Numer. Meth. Eng., 27, 285–298
(1989).
Received 09. 05. 2010
58 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2011, ¹ 5
A. Boutaous, M. Elchikh, M. Abdelouahab, and A. Belaidi
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /All
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJDFFile false
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|