An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending

A linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the geometry of the structure an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Hamdouni, A., Millet, O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут механіки ім. С.П. Тимошенка НАН України 2010
Schriftenreihe:Прикладная механика
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/95414
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending / A. Hamdouni, O. Millet // Прикладная механика. — 2010. — Т. 46, № 9. — С. 123-143. — Бібліогр.: 48 назв. — анг.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the geometry of the structure and the level of applied forces. For a given force level, the order of magnitude of the displacements and the corresponding one-dimensional model are deduced by asymptotic expansions. In the case of low force levels, we obtain a one dimensional model whose kinematics, traction and twist equations correspond to Vlassov ones. However this model couples twist and bending effects in the bending equations, at the difference from Vlassov model where the twist angle and the bending displacement are uncoupled.