An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending
A linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the geometry of the structure an...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут механіки ім. С.П. Тимошенка НАН України
2010
|
Schriftenreihe: | Прикладная механика |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/95414 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | An Asymptotic Linear Thin-Walled Rod Model Coupling Twist and Bending / A. Hamdouni, O. Millet // Прикладная механика. — 2010. — Т. 46, № 9. — С. 123-143. — Бібліогр.: 48 назв. — анг. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | A linear one-dimensional model for thin-walled rods with open strongly
curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the
linear three-dimensional equilibrium equations lets appear dimensionless numbers which reflect the
geometry of the structure and the level of applied forces. For a given force level, the order of
magnitude of the displacements and the corresponding one-dimensional model are deduced by
asymptotic expansions. In the case of low force levels, we obtain a one dimensional model whose
kinematics, traction and twist equations correspond to Vlassov ones. However this model couples
twist and bending effects in the bending equations, at the difference from Vlassov model where the
twist angle and the bending
displacement are uncoupled. |
---|