Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures
Применение композитов в космической и криогенной технике обусловливает необходимость определения механических характеристик армированных волокнами стеклоэпоксидных композитов. Однако в настоящее время отсутствуют результаты экспериментальных и расчетных исследований процесса разрушения стеклоэпоксид...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2012
|
Schriftenreihe: | Проблемы прочности |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/96092 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures / M.M. Shokrieh, M.A. Torabizadeh, A. Fereidoon // Проблемы прочности. — 2012. — № 3. — С. 123-137. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-96092 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-960922016-03-12T03:01:34Z Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures Shokrieh, M.M. Torabizadeh, M.A. Fereidoon, A. Научно-технический раздел Применение композитов в космической и криогенной технике обусловливает необходимость определения механических характеристик армированных волокнами стеклоэпоксидных композитов. Однако в настоящее время отсутствуют результаты экспериментальных и расчетных исследований процесса разрушения стеклоэпоксидного ламината (с концентратором напряжений или без такового) в условияхтермомеханического статического нагружения при низких температурах. Предложена модель, позволяющая рассчитать процесс разрушения в квазиизотропных пластинах композита при низких температурах. Исходное значение предельной нагрузки определяется в упругой постановке. Нагрузка повышается пошагово, для каждого уровня рассчитываются напряжения и оценивается возможное разрушение с помощью соответствующего критеря прочности. Свойства материала в разрушенной части ламината варьируют согласно типу разрушения с использованием ненулевого коэффициента деградациижесткости. Далее выполняется модифицированная итерация Ньютона–Рафсона до момента сходимости. Расчет повторяется для каждого прироста нагрузки вплоть до полного разрушения с оценкой предела прочности. Предложенный метод обеспечивает хорошее согласование между расчетными и экпериментальными результатами при комнатной температуре и -60°С. Оценивается влияние низкой температуры на механизм разрушения пластин из композита. Використання композитів у космічній і криогенній техніці зумовлює необхідність визначення механічних характеристик армованих волокнами склоепоксидних композитів. Однак до сьогодні відсутні дані експериментальних і розрахункових досліджень процесу руйнування склоепоксидного ломіната (із концентратором напружень або без) в умовах статичного навантаження за низьких температур. Запропоновано модель, що дозволяє розрахувати процес руйнування в квазіізотропних пластинах за низьких температур. Початкова величина граничного навантаження визначається у пружній постановці. Навантаження збільшується ступенево, для кожного рівня розраховуються напруження й оцінюється можливе руйнування за допомогою критерію міцності. Властивості матеріалу в частині ламіната, де мало місце руйнування, варіюють згідно з типом руйнування з використанням ненульового коєфіцієнта деградації жорсткості. Далі виконується модифікована ітерація Ньютона–Рафсона до моменту збіжності. Розрахунок повторюється для кожного приросту навантаження аж до повного руйнування з оцінкою границі міцності. Запропонований метод забезпечує хорошу відповідність між розрахунковими й експериментальними результатами за температури -60°С та кімнатної. Оцінюється вплив низької температури на механізм руйнування пластин із композита. 2012 Article Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures / M.M. Shokrieh, M.A. Torabizadeh, A. Fereidoon // Проблемы прочности. — 2012. — № 3. — С. 123-137. — Бібліогр.: 30 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/96092 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Shokrieh, M.M. Torabizadeh, M.A. Fereidoon, A. Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures Проблемы прочности |
description |
Применение композитов в космической и криогенной технике обусловливает необходимость определения механических характеристик армированных волокнами стеклоэпоксидных композитов. Однако в настоящее время отсутствуют результаты экспериментальных и расчетных исследований процесса разрушения стеклоэпоксидного ламината (с концентратором напряжений или без такового) в условияхтермомеханического статического нагружения при низких температурах. Предложена модель, позволяющая рассчитать процесс разрушения в квазиизотропных пластинах композита при низких температурах. Исходное значение предельной нагрузки определяется в упругой постановке. Нагрузка повышается пошагово, для каждого уровня рассчитываются напряжения и оценивается возможное разрушение с помощью соответствующего критеря прочности. Свойства материала в разрушенной части ламината варьируют согласно типу разрушения с использованием ненулевого коэффициента деградациижесткости. Далее выполняется модифицированная итерация Ньютона–Рафсона до момента сходимости. Расчет повторяется для каждого прироста нагрузки вплоть до полного разрушения с оценкой предела прочности. Предложенный метод обеспечивает хорошее согласование между расчетными и экпериментальными результатами при комнатной температуре и -60°С. Оценивается влияние низкой температуры на механизм разрушения пластин из композита. |
format |
Article |
author |
Shokrieh, M.M. Torabizadeh, M.A. Fereidoon, A. |
author_facet |
Shokrieh, M.M. Torabizadeh, M.A. Fereidoon, A. |
author_sort |
Shokrieh, M.M. |
title |
Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures |
title_short |
Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures |
title_full |
Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures |
title_fullStr |
Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures |
title_full_unstemmed |
Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures |
title_sort |
progressive failure analysis of glass/epoxy composites at low temperatures |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2012 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/96092 |
citation_txt |
Progressive Failure Analysis of Glass/Epoxy Composites at Low Temperatures / M.M. Shokrieh, M.A. Torabizadeh, A. Fereidoon // Проблемы прочности. — 2012. — № 3. — С. 123-137. — Бібліогр.: 30 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT shokriehmm progressivefailureanalysisofglassepoxycompositesatlowtemperatures AT torabizadehma progressivefailureanalysisofglassepoxycompositesatlowtemperatures AT fereidoona progressivefailureanalysisofglassepoxycompositesatlowtemperatures |
first_indexed |
2025-07-07T03:16:24Z |
last_indexed |
2025-07-07T03:16:24Z |
_version_ |
1836956448444121088 |
fulltext |
UDC 539.4
Progressive Failure Analysis of Glass/Epoxy Composites at Low
Temperatures
M. M. Shokrieh,
a
M. A. Torabizadeh,
b,1
and A. Fereidoon
b
a Iran University of Science and Technology, Tehran, Iran
b University of Semnan, Semnan, Iran
1 Torabizadeh@yahoo.com
ÓÄÊ 539.4
Ðàñ÷åò ïðîöåññà ðàçðóøåíèÿ ñòåêëîýïîêñèäíûõ êîìïîçèòîâ ïðè
íèçêèõ òåìïåðàòóðàõ
Ì. Ì. Øîêðè
à
, Ì. À. Òîðàáèçàäå
á
, À. Ôåðåéäóí
á
à Èðàíñêèé óíèâåðñèòåò íàóêè è òåõíîëîãèè, Òåãåðàí, Èðàí
á Óíèâåðñèòåò ã. Ñåìíàíà, Èðàí
Ïðèìåíåíèå êîìïîçèòîâ â êîñìè÷åñêîé è êðèîãåííîé òåõíèêå îáóñëîâëèâàåò íåîáõîäèìîñòü
îïðåäåëåíèÿ ìåõàíè÷åñêèõ õàðàêòåðèñòèê àðìèðîâàííûõ âîëîêíàìè ñòåêëîýïîêñèäíûõ êîìïî-
çèòîâ. Îäíàêî â íàñòîÿùåå âðåìÿ îòñóòñòâóþò ðåçóëüòàòû ýêñïåðèìåíòàëüíûõ è ðàñ÷åò-
íûõ èññëåäîâàíèé ïðîöåññà ðàçðóøåíèÿ ñòåêëîýïîêñèäíîãî ëàìèíàòà (ñ êîíöåíòðàòîðîì
íàïðÿæåíèé èëè áåç òàêîâîãî) â óñëîâèÿõ òåðìîìåõàíè÷åñêîãî ñòàòè÷åñêîãî íàãðóæåíèÿ ïðè
íèçêèõ òåìïåðàòóðàõ. Ïðåäëîæåíà ìîäåëü, ïîçâîëÿþùàÿ ðàññ÷èòàòü ïðîöåññ ðàçðóøåíèÿ â
êâàçèèçîòðîïíûõ ïëàñòèíàõ êîìïîçèòà ïðè íèçêèõ òåìïåðàòóðàõ. Èñõîäíîå çíà÷åíèå ïðå-
äåëüíîé íàãðóçêè îïðåäåëÿåòñÿ â óïðóãîé ïîñòàíîâêå. Íàãðóçêà ïîâûøàåòñÿ ïîøàãîâî, äëÿ
êàæäîãî óðîâíÿ ðàññ÷èòûâàþòñÿ íàïðÿæåíèÿ è îöåíèâàåòñÿ âîçìîæíîå ðàçðóøåíèå ñ ïîìî-
ùüþ ñîîòâåòñòâóþùåãî êðèòåðÿ ïðî÷íîñòè. Ñâîéñòâà ìàòåðèàëà â ðàçðóøåííîé ÷àñòè
ëàìèíàòà âàðüèðóþò ñîãëàñíî òèïó ðàçðóøåíèÿ ñ èñïîëüçîâàíèåì íåíóëåâîãî êîýôôèöèåíòà
äåãðàäàöèè æåñòêîñòè. Äàëåå âûïîëíÿåòñÿ ìîäèôèöèðîâàííàÿ èòåðàöèÿ Íüþòîíà– Ðàôñîíà
äî ìîìåíòà ñõîäèìîñòè. Ðàñ÷åò ïîâòîðÿåòñÿ äëÿ êàæäîãî ïðèðîñòà íàãðóçêè âïëîòü äî
ïîëíîãî ðàçðóøåíèÿ ñ îöåíêîé ïðåäåëà ïðî÷íîñòè. Ïðåäëîæåííûé ìåòîä îáåñïå÷èâàåò õîðî-
øåå ñîãëàñîâàíèå ìåæäó ðàñ÷åòíûìè è ýêïåðèìåíòàëüíûìè ðåçóëüòàòàìè ïðè êîìíàòíîé
òåìïåðàòóðå è � �60 Ñ . Îöåíèâàåòñÿ âëèÿíèå íèçêîé òåìïåðàòóðû íà ìåõàíèçì ðàçðóøåíèÿ
ïëàñòèí èç êîìïîçèòà.
Êëþ÷åâûå ñëîâà: ïðîöåññ ðàçðóøåíèÿ, ñòåêëîýïîêñèäíûå êîìïîçèòû, íèçêèå
òåìïåðàòóðû.
Introduction. Glass fiber reinforced polymeric (GFRP) composites are
promising materials to the cryogenic structures. A reliable and economical design
of a composite structure requires a designer to determine the load carrying capacity
at low temperature service. Cryogenic performances of GFRP composite are
significantly changed in mechanical properties under a cryogenic environment.
Several studies have reported on the mechanical properties of composites under
cryogenic temperatures.
© M. M. SHOKRIEH, M. A. TORABIZADEH, A. FEREIDOON, 2012
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 123
Schutz [1] reviewed properties of composite materials for cryogenic
applications. He consider several types of matrix and fibers. Baynham et al. [2]
investigated transverse mechanical properties of glass reinforced composite
materials at 4 K. They demonstrated that the transverse tensile strength of
composite is significantly greater than those reported at room temperature. Shindo
et al. [3] evaluated the cryogenic compressive properties of G-10CR and SL-ES30
glass-cloth/epoxy laminates. The effects of temperature and specimen geometry on
the compressive properties were also examined by compression tests at room
temperature, liquid nitrogen temperature and liquid helium temperature. Wang and
Zhao [4] presented an analytical approach, which combines the modified shear-lag
model and Monte-Carlo simulation technique to simulate numerically the mechanical
behaviors including the failure processes, tensile stiffness and strength, etc. for
unidirectional composites at room and low temperatures. They found that the
tensile moduli and strengths at low temperature are generally larger than those at
room temperature. Ip et al. [5] investigated on the influence of low temperature and
moisture on the dynamic moduli of thick S2-glass composite beams. They found
that both frequencies and moduli of the beam sample were found to exhibit an
increasing trend with reducing temperature. Sánchez-Sáez et al. [6] summarized the
results of the tests to determine the effect of the low temperature on the mechanical
behavior of carbon fiber reinforced epoxy laminates. Tensile and bending static
tests were carried out on two laminate lay-ups. Their results showed the changes in
the mechanical behavior of this material at different test temperatures. Bechel and
Kim [7] identified damage trends in cryogenically cycled carbon/polymer
composites. They found several trade-offs affecting damage accumulation from
cryogenic cycling, i.e., controlling single ply versus multiple ply damage
progression, and processing related property knock-downs versus processing
induced residual stresses. Kim and Donaldson [8] described the development of
damage in the form of transverse ply microcrack and interlaminar delamination
within laminates under combined thermal and mechanical loading. They compared
their analytical results with the corresponding results that were experimentally
determined and found good agreement. Ifju et al. [9] preformed a study into the
development of residual stress as a function of temperature to help provide insight
into this situation. They found general agreement between composite laminate
theory and the results from the cure referencing method (CRM). Rupnowski et al.
[10] predicted mechanical response of a unidirectional composite based on
T650-35 graphite fibers embedded in a PMR-15 polyimide resin analytically and
numerically as a function of temperature and finally compared the results with
available experimental data. Kim et al. [11] studied the tensile properties of a
T700/epoxy composite, which had been cycled with thermo-mechanical loads at
low temperatures, using an environmental test chamber. Results showed that tensile
stiffness significantly increased as temperature decreased, while the thermo-
mechanical cycling had little influence on it. Tensile strength, however, decreased
as temperature decreased down to cold temperature (CT), while the decreasing rate
of strength was reduced after CT cycling. Takeda et al. [12] examined the
thermo-mechanical behavior of cracked G-11 woven glass/epoxy laminates with
temperature-dependent material properties under tension at cryogenic temperatures.
They found that residual thermal stresses have no significant effect on the Young
M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon
124 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3
modulus and Poisson’s ratio of G-11 woven laminates. In contrast, the effect of
residual thermal stresses on the stress distributions near the crack fronts is more
pronounced with decreasing of the temperature. Shindo et al. [13] illustrated an
experimental and analytical investigation in cryogenic Mode I interlaminar fracture
behavior and toughness of SL-E woven glass-epoxy laminates. They performed
their tests at room temperature, �196, and � �269 C to evaluate the effect of
temperature on the interlaminar fracture toughness. They found that interlaminar
fracture toughness increased with temperature decrease to � �196 C. Melcher and
Johnson [14] determined the effect of cryogenic temperature on the adhesive
fracture toughness of an adhesively bonded joint with composite adherents. Mode I
fracture toughness tests were performed at room temperature and � �196 C.
Experimental results exhibit reduced fracture toughness at the cryogenic
temperature.
Shindo et al. [15] described an experimental and analytical study on the
cryogenic fatigue behavior of glass fiber reinforced polymer woven laminates
under Mode I loading. They found that at low temperature, fatigue loading causes
damage to develop in the form of fiber breakage and matrix cracking which lead to
material property degradation. Shindo et al. [16] also investigated the cryogenic
fatigue delamination behavior of glass fiber reinforced polymer woven laminates
under Mode I loading experimentally and numerically. The results showed that
fatigue delamination growth rates of the GFRP woven laminates at low temperature
were much lower than that at room temperature. Kumagai et al. [17] studied the
fatigue damage behavior of GFRP woven laminates in terms of stiffness degradation
and residual strength under cyclic loading at low temperature experimentally.
Shindo et al. [18] focused on understanding the tension–tension fatigue behavior of
woven glass fiber reinforced polymer laminates at cryogenic temperatures. The
fatigue tests were performed at room temperature, �196, and � �269 C. Failure
modes at room temperature featured a macroscopically flat fracture surface. At the
cryogenic temperatures, however, delamination appeared.
Lebeas et al. [19] developed a progressive damage model capable of predicting
the interaction effect between the post-buckling behavior and various failure modes
of composite plates. The analysis was based on comprises stress analysis, failure
analysis and material properties degradation modules. Liu and Wang [20], studied
the tensile behavior of open-hole composite plates bonded with external composite
patches. Zhao et al. [21] investigated numerically and experimentally the progressive
failure of tri-axial woven fabric composite panels subjected to uniaxial extension.
Tensor polynomial progressive failure procedure was employed with maximum
stress criterion, Hoffman criterion and Tsai–Wu criterion. They compared the first
and ultimate failure loads, maximum extension displacement, locations and modes
of failure with experimental data. Icten and Karakuzu [22] presented an investigation
deals with the failure strength and failure mode of a pinned-joint carbon-epoxy
composite plate of arbitrary orientations. Takeda et al. [23] illustrated a study on
understanding the deformation and progressive failure behavior of glass/epoxy
plain weave fabric reinforced laminates subjected to uniaxial tension at cryogenic
temperatures. Shindo et al. [24] experimentally and numerically worked on the
cryogenic tensile and damage behavior of glass fiber reinforced polymer woven
laminates. Akhras and Li [25] introduced a progressive failure analysis for thick
Progressive Failure Analysis of Glass/Epoxy Composites ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 125
composite plates using spline finite strip method. Shokrieh et al. [26] presented a
progressive failure analysis for glass/epoxy composite plates at room temperature
using classical lamination theory (CLT). They compared the first and ultimate
failure loads, and strain to failure with available experimental data.
With respect to literature survey, fewer researches were discussed the
progressive damage modeling of a laminated composite with/without stress
concentration at low temperature in both experimental and numerical methods.
The main objective of present paper is to investigate the tensile failure behavior of
glass/epoxy laminated composite with/without stress concentration subjected to
thermomechanical loadings at low temperatures experimentally and numerically. A
finite element model was developed to perform the progressive failure analysis of
quasi isotropic composite plates at low temperatures. The load is increased step by
step after detection initial failure load by means of an elastic stress analysis. For
each given load, the stresses at each integration point are evaluated and the
appropriate failure criterion is applied to inspect for possible failure by using
Hashin failure criteria. For the failed elements, material properties are modified
according to the failure mode using a non-zero stiffness degradation factor. Then,
the modified Newton–Raphson iteration is carried out until convergence is reached.
This analysis is repeated for each load increment until the final failure occurs and
the ultimate strength is determined. Finally effects of low temperature on the
mechanism of failure are determined.
Materials and Specimen Geometry.
Material Properties. Unidirectional glass fibers, have been used in this
investigation as reinforcement material, while epoxy resin has been considered as a
matrix material. Hand lay-up method was used to fabricate thin laminates with
epoxy resin ML-506 with hardener HA11. Test specimens were cut from laminates
according to relevant standard codes. The fiber volume fraction of the composites
was 55%.
Specimen Geometry. Quasi-isotropic lay-up ([ / / ]0 45 90 2� s) was used in this
study for tensile tests at room temperature and � �60 C. For this reason, thin
laminate composed of ten plies of reinforcement with epoxy resin were fabricated
with considered configuration, giving a laminate approximately 2 mm in thickness.
For laminate with stress concentration, a central hole was made by a machine.
Woven glass/epoxy tabs with tapered ends were locally bonded on each side of the
specimens. These tabs allow a smooth load transfer from the grip to the specimen
especially for low temperature test. All specimens had a constant cross section with
tabs bonded to the ends. The geometry of the specimen with stress concentration
for tensile tests is shown in Fig. 1.
Progressive Damage Modeling (PDM).
Stress Analysis. The first component of the PDM is finite element stress
analysis. Consider a composite plate with/without stress concentration (Fig. 1). The
plate has width W �25 mm, length l�170 mm, thickness t�2 mm, and central
hole d�6 mm (if applicable). The plate is a laminated composite with quasi-
isotropic ply orientation. A two dimensional macro code by APDL of ANSYS [27]
is developed to perform finite element analysis. In this paper, the 8-node layered
element SHELL 99 is adopted to model the laminates, which allows up to 250
different material layers in the thickness direction in each element without
126 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3
M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon
significant increase of counting time. Mechanical properties of a unidirectional
laminate at room temperature and� �60 C, which is used as initial values in finite
element method and listed in Table 1, were tested by the present authors [28].
In this table, the script x refers to the fiber direction, and y refers to
direction perpendicular to the fiber direction. In this study, the stress resultants are
defined as follow:
� � �total M T� � , (1)
where � M and �T are the mechanical and thermal stresses, respectively. Thermal
stresses are due to decreasing temperature from room temperature to� �60 C. These
stress resultants will be calculated by the following relation:
�
�
�
�
T
x
T
y
T
xy
T
Q Q Q
Q Q Q
Q Q
�
�
�
�
�
�
11 12 16
21 22 26
61 62 66Q
x
T
y
T
xy
T
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
. (2)
In the above equation, [ ]Qij is transformed reduced stiffness matrix for a
laminated composite and { }� ij
T is thermal strain vector which is defined as follow:
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 127
Progressive Failure Analysis of Glass/Epoxy Composites ...
Fig. 1. Geometry of the specimen with stress concentration for tensile test at room temperature and
� �60 C.
T a b l e 1
Mechanical Properties of GFRP at Room and Low Temperatures
Mechanical properties 23�C � �60 C
Longitudinal elastic modulus Ex (GPa) 19.94 28.65
Transverse elastic modulus Ey (GPa) 5.83 11.03
Shear elastic modulus Gxy (GPa) 2.11 4.21
Longitudinal tensile strength X t (MPa) 700.11 784.98
Longitudinal compression strength X c (MPa) 570.37 731.94
Transverse tensile strength Yt (MPa) 69.67 75.20
Transverse compression strength Yc (MPa) 122.12 186.22
Shear strength S (MPa) 68.89 91.22
�
�
�
�
�
�
x
T
y
T
xy
T
x
y
xy
T
�
�
�
�
�
�
�
�
�
� , (3)
where �T and { }� ij are temperature difference from room temperature and
coefficients of thermal expansion for an angle ply laminate, respectively. Values of
{ }� ij can be given in terms of the coefficients of thermal expansion for a
unidirectional laminate as
�
�
�
�
�
x
y
xy
T
2 0
1
1
2
�
�
�
�
�
�
�
�
�
�[ ] , (4)
and [ ]T is a transformation matrix for an angle ply laminate [29].
Failure Criterion. The second part of PDM is failure analysis. By using finite
element results, at layer level in each element, stiffness reduction is carried out
considering five types of damages: fiber and matrix in tension and compression
and fiber–matrix shearing modes. To detect them, a set of two dimensional stress
based failure criterion is selected. The following Hashin criteria [30] are used to
detect five different failure modes (Table 2). The first two of the failure modes are
catastrophic and the others are not.
Material Properties Degradation Rules. The last component of PDM is
material properties degradation. As failure occurs in a unidirectional ply of a
laminate, material properties of that failed ply are changed by a set of sudden
material property degradation rules. In the present method, after failure occurrence
in a ply of the laminate, instead of inducing real crack, the failed region of the
128 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3
M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon
T a b l e 2
Hashin Failure Criteria
Condition Failure criterion Failure relation
�xx � 0 Fiber tensile failure � �
xx
t
xy
F
F
FX S
e
e
e
�
�
��
�
�
�� �
�
�
��
�
�
���
!�
�
�
2
2
1
1
fail
safe
�
�
�xx ! 0 Fiber compressive failure �xx
c
F
F
FX
e
e
e
�
!
�
�
�
�
�
1
1
fail
safe
� yy � 0 Matrix tensile failure � �yy
t
xy
M
M
MY S
e
e
e
�
�
��
�
�
�� �
�
�
��
�
�
�� �
!�
�
�
2 2
2
1
1
fail
safe
�
�
� yy ! 0 Matrix compressive failure � �yy
c
xy
M
M
MY S
e
e
e
�
�
��
�
�
�� �
�
�
��
�
�
�� �
!�
�
�
2 2
2
1
1
fail
safe
�
�
�xx ! 0 Fiber–matrix shearing failure � �
xx
c
xy
FM
FM
FMX S
e
e
e
�
�
��
�
�
�� �
�
�
��
�
�
�� �
!
2 2
2
1
1
fail
safe
�
�
unidirectional ply is replaced by an intact ply of lower material properties. A
complete set of sudden material property degradation rules for all various failure
modes of a unidirectional ply under a uniaxial static stress is explained in the
following. The rules must be carefully applied to avoid numerical instabilities
during computation by the computer program.
Fiber Tension Failure. Fiber tension failure mode of a ply is a catastrophic
mode of failure and when it occurs, the failed material cannot sustain any type or
combination of stresses. Thus, all material properties of the failed ply are reduced,
as follows:
[ , , , , ] [ , , ,E E G E E Gx y xy xy yx cdr x cdr y cdr xy cdr xy" " # # # # "$ , ],# "cdr yx (5)
[ , , , , ] [ , , , ,X Y X Y S X Y X Y St t c c cdr t cdr t cdr c cdr c cdr$ # # # # # ], (6)
where #cdr is coefficient of degradation rules. Extensive comparative studies are
carried out to study the effect of #cdr , which indicates that #cdr would greatly
influence the strength prediction and failure mechanism in the progressive damage
model. After a careful comparative study, #cdr � 0.001 is applied in the current
model.
Fiber Compression Failure. Fiber compression failure mode of a unidirectional
ply is a catastrophic mode of failure and when it occurs, the failed material cannot
sustain any type or combination of stresses. Thus, all material properties of the
failed ply are reduced. Equations 7 and 8 show this degradation rule
[ , , , , ] [ , , ,E E G E E Gx y xy xy yx cdr x cdr y cdr xy cdr xy" " # # # # "$ , ],# "cdr yx (7)
[ , , , , ] [ , , , ,X Y X Y S X Y X Y St t c c cdr t cdr t cdr c cdr c cdr$ # # # # # ]. (8)
As mentioned, these two modes of failure are catastrophic, therefore if it
occurs, the other modes of failure do not need to also be verified.
Matrix Tension Failure. In matrix tension failure mode of a ply, that is not
catastrophic failure, only matrix direction affected, therefore other material properties
are left unchanged (Eqs. 9 and 10)
[ , , , , ] [ , , , , ],E E G E E Gx y xy xy yx x cdr y xy xy cdr yx" " # " # "$ (9)
[ , , , , ] [ , , , , ].X Y X Y S X Y X Y St t c c t cdr t c c$ # (10)
Matrix Compression Failure. Matrix compression failure mode results in the
same type of damage to the composite ply as the matrix tension failure mode. This
mode of failure is not catastrophic; therefore, other material properties are left
unchanged:
[ , , , , ] [ , , , , ],E E G E E Gx y xy xy yx x cdr y xy xy cdr yx" " # " # "$ (11)
[ , , , , ] [ , , , , ].X Y X Y S X Y X Y St t c c t t c cdr c$ # (12)
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 129
Progressive Failure Analysis of Glass/Epoxy Composites ...
Fiber–Matrix Shear Failure. In fiber–matrix shearing failure modes of a ply,
the material can still carry load in the fiber and matrix directions, but in-plane
shear stress can no longer be carried. This is modeled by reducing the in-plane
shear material properties of the failed ply, as follows:
[ , , , , ] [ , , , ,E E G E E Gx y xy xy yx x y cdr xy cdr xy cdr yx" " # # " # "$ ], (13)
[ , , , , ] [ , , , , ].X Y X Y S X Y X Y St t c c t t c c cdr$ # (14)
The PDM is an integration of the three important components: stress analysis,
failure analysis and material property degradation. The model is capable of
simulating the first and final failure load of composite laminates with arbitrary
geometry and stacking sequence under tensile static loading at room temperature
and� �60 C.
A computer program, the algorithm of which is shown in Fig. 2, is established
to analyze the failure mechanism of composite plates at low temperatures using
APDL of ANSYS. All material properties are set to initial values which are
experimentally evaluated by present authors [28]. The initial failure load is
calculated by means of an elastic stress analysis. The load is increased step by step.
For each given load, the stresses at each integration point are evaluated and the
appropriate failure criterion is applied to inspect for possible failure. At the point
with failure, the material properties are modified according to the failure mode
using a non-zero stiffness degradation factor. Then, the modified Newton–Raphson
iteration is carried out until convergence is reached. The convergence tolerance is
assumed to be 0.001. This analysis is repeated for each load increment until the
final failure occurs and the ultimate strength is determined.
Theoretically, the smaller load increment between successive steps, the more
accurate analysis result can be achieved. However, a reasonable load increment
130 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3
M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon
Fig. 2. The algorithm of progressive damage modeling.
should be prescribed to avoid too much analysis time and to ensure accuracy. After
sensitivity analysis on load increment, 1 kN is applied in the current model.
Results and Discussion. The specimens are tested under static tensile loading
at room and low temperatures. In each case (with or without stress concentration)
at room temperature four specimens and at � �60 C five coupons were tested to
show statistic scatter of experiments. By statistical evaluation (mean values and
standard deviation) reliability of results were appraised. The experimental setup for
low temperature tests using an environmental chamber is shown in Fig. 3.
The chamber has the ability to cool down its temperature to � �196 C by
evaporating a liquid cryogenic medium, and liquid nitrogen was used as that
medium in the tests. The chamber was equipped with an Instron 5582 as shown in
Fig. 4. All experimental tests performed under displacement control with rate of
2 mm/min. During the tests, a pressurizing device was used to control the cooling
time from room temperature to� �60 C and maintain an evaporating pressure of
152 kPa.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 131
Progressive Failure Analysis of Glass/Epoxy Composites ...
Fig. 3. Environmental chamber for low temperature tests.
Fig. 4. Experimental set up for mechanical testing at room and low temperatures.
The average tensile properties such as first ply failure (FPF) load, final failure
(FF) load and ultimate strain to failure (USF) for quasi-isotropic laminates
with/without stress concentration determined based on results of stress–strain
curves from experimental tests and numerical analysis are summarized in Table 3.
Figures 5 and 6 show the failure process predicted by the model at room
temperature and� �60 C, respectively. At the FPF load, a mainly obvious damage
around the hole of plate is matrix cracking (Figs. 5a and 6a). By increasing the
load, other failure modes are also occurred (Figs. 5b and 6b). At the final failure
load, the plate breaks along the transverse direction through the central hole edge,
the same as noticed in the experimental tests. In this load, the mainly failure mode
is fiber breakage (Figs. 5c and 6c). As shown in the following figures, the failure
regions of specimens at� �60 C at each step is much more than room temperature.
132 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3
M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon
T a b l e 3
Average Test Results on Glass/Epoxy Laminated Composite
at Room Temperature (RT) and � �60 C
Characteristic With stress concentration Without stress concentration
Analytical Experimental Analytical Experimental
RT � �60 C RT � �60 C RT � �60 C RT � �60 C
FPF (kN) 2.045 6.280 1.800 5.750 3.120 5.600 2.150 4.520
FF (kN) 13.720 18.270 11.960 16.310 15.580 18.530 13.860 17.370
USF 0.041 0.036 0.040 0.037 0.056 0.058 0.055 0.057
a b
Fig. 5. Failure process of plate with stress concentration at room temperature: (a) F � 2.04 kN (FPF);
(b) F � 8 kN; (c) F � 13.72 kN (FF). Here and in Fig. 6: (1) fiber breakage, (2) matrix cracking, and
(3) fiber–matrix shearing.
c
In all cases, major failure mode was fiber breakage (1), matrix cracking (2),
and fiber–matrix shearing (3), respectively, which are shown in the Figs. 5 and 6.
Other failure modes are also occurred in the final failure but can not be shown in
the figures.
Figure 7 illustrates mean values of tensile strength for quasi-isotropic laminate
at room temperature and� �60 C with and without stress concentration. This figure
also compares experimental results with those obtained from the present finite
element model. Results show that strength of laminate increased by decreasing
temperature. This is because of change of micromechanical properties of composites
at low temperature.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 133
Progressive Failure Analysis of Glass/Epoxy Composites ...
a b
c
Fig. 6. Failure process of plate with stress concentration at� �60 C: (a) F � 6.28 kN (FPF); (b) F �
10 kN; (c) F � 18.27 kN (FF).
a b
Fig. 7. Tensile strength of laminates at different temperatures without (a) and with (b) stress
concentration.
Figure 8 shows typical stress–strain curve for the laminate with stress
concentration based on experimental results at room temperature and� �60 C.
Failure mechanism of tested specimens with central hole at room temperature
and � �60 C are different. Figure 9 shows failed specimens at two different
temperatures. From a visual inspection, there is a small amount of tab debonding
near the gage area for both two cases with more fiber pull-out for low temperature
specimen. At low temperature, because of the interface between fiber and matrix
are much weaker and the fiber debond from the matrix, synchronous with fiber
breakage, matrix cracking and a few fiber–matrix shearing were occurred. However,
the mainly failure mode for all cases is fiber breakage and matrix cracking.
Conclusions. Tensile failure behavior of glass/epoxy laminated composite
subjected to thermo-mechanical loadings at low temperatures with/without stress
concentration was investigated experimentally and numerically. A finite element
code was utilized to model the progressive failure analysis of quasi-isotropic
composite plates at low temperatures under static loading. For each given load
step, the stresses at each integration point are evaluated and the appropriate failure
criterion is applied to inspect for possible failure by using Hashin failure criteria.
At the point with failure, the material properties are modified according to the
failure mode using a non-zero stiffness degradation factor. In case of failure
detection, because of nonlinear behavior, the modified Newton–Raphson method
134 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3
M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon
Fig. 8. Typical stress–strain curve for quasi-isotropic laminate with central hole at room temperature
and � �60 C.
Fig. 9. Failure regions of glass-fiber reinforced epoxy composites at room temperature and � �60 C.
25�C
� �60 C
was carried out until convergence is reached. This analysis is repeated for each
load increment until the final failure occurs and the ultimate strength is determined.
Based on the results of the present study, the following conclusions can be drawn:
1. The stress-strain behavior of laminate under tensile loads was linear elastic
until first ply failure (FPF). After this, the behavior of laminate was nonlinear until
final failure occurred. This trend was observed for laminated composite with/
without stress concentration at both temperatures.
2. The slope of the stress–strain curve and the strength of laminate increased
as the temperature decreased to � �60 C. On the other hand, by decreasing
temperature, strain to failure decreased slightly. Thus, in spite of improvement in
strength and stiffness of composites under static loading at low temperatures in
comparison with room temperature, their strain to failure under these environmental
conditions becomes weaker.
3. The failure mode of laminated composite at low temperature changes from
matrix cracking at FPF to mixed mode failure (fiber breakage, fiber matrix
shearing and matrix cracking) at final failure load.
4. Failure type of laminates under various loadings was affected by low
temperature. It was found that, by decreasing temperature a small amount of tab
debonding occurred near the gage area with more fiber pull-out. Also, due to
weakness of the interface between fiber and matrix at low temperature, fiber
debonds the matrix. Therefore, it may be concluded that the lower temperature
affects the micro mechanisms of damage.
5. Good agreement was achieved between results from experimental and
analytical calculation at room temperature and � �60 C. This agreement also
showed the validity of model.
Ð å ç þ ì å
Âèêîðèñòàííÿ êîìïîçèò³â ó êîñì³÷í³é ³ êðèîãåíí³é òåõí³ö³ çóìîâëþº íåîá-
õ³äí³ñòü âèçíà÷åííÿ ìåõàí³÷íèõ õàðàêòåðèñòèê àðìîâàíèõ âîëîêíàìè ñêëî-
åïîêñèäíèõ êîìïîçèò³â. Îäíàê äî ñüîãîäí³ â³äñóòí³ äàí³ åêñïåðèìåíòàëüíèõ ³
ðîçðàõóíêîâèõ äîñë³äæåíü ïðîöåñó ðóéíóâàííÿ ñêëîåïîêñèäíîãî ëîì³íàòà (³ç
êîíöåíòðàòîðîì íàïðóæåíü àáî áåç) â óìîâàõ ñòàòè÷íîãî íàâàíòàæåííÿ çà
íèçüêèõ òåìïåðàòóð. Çàïðîïîíîâàíî ìîäåëü, ùî äîçâîëÿº ðîçðàõóâàòè ïðîöåñ
ðóéíóâàííÿ â êâàç³³çîòðîïíèõ ïëàñòèíàõ çà íèçüêèõ òåìïåðàòóð. Ïî÷àòêîâà
âåëè÷èíà ãðàíè÷íîãî íàâàíòàæåííÿ âèçíà÷àºòüñÿ ó ïðóæí³é ïîñòàíîâö³. Íà-
âàíòàæåííÿ çá³ëüøóºòüñÿ ñòóïåíåâî, äëÿ êîæíîãî ð³âíÿ ðîçðàõîâóþòüñÿ íà-
ïðóæåííÿ é îö³íþºòüñÿ ìîæëèâå ðóéíóâàííÿ çà äîïîìîãîþ êðèòåð³þ ì³ö-
íîñò³. Âëàñòèâîñò³ ìàòåð³àëó â ÷àñòèí³ ëàì³íàòà, äå ìàëî ì³ñöå ðóéíóâàííÿ,
âàð³þþòü çã³äíî ç òèïîì ðóéíóâàííÿ ç âèêîðèñòàííÿì íåíóëüîâîãî êîºô³-
ö³ºíòà äåãðàäàö³¿ æîðñòêîñò³. Äàë³ âèêîíóºòüñÿ ìîäèô³êîâàíà ³òåðàö³ÿ Íüþ-
òîíà–Ðàôñîíà äî ìîìåíòó çá³æíîñò³. Ðîçðàõóíîê ïîâòîðþºòüñÿ äëÿ êîæíîãî
ïðèðîñòó íàâàíòàæåííÿ àæ äî ïîâíîãî ðóéíóâàííÿ ç îö³íêîþ ãðàíèö³ ì³ö-
íîñò³. Çàïðîïîíîâàíèé ìåòîä çàáåçïå÷óº õîðîøó â³äïîâ³äí³ñòü ì³æ ðîçðàõóí-
êîâèìè é åêñïåðèìåíòàëüíèìè ðåçóëüòàòàìè çà òåìïåðàòóðè � �60 Ñ òà ê³ì-
íàòíî¿. Îö³íþºòüñÿ âïëèâ íèçüêî¿ òåìïåðàòóðè íà ìåõàí³çì ðóéíóâàííÿ ïëàñ-
òèí ³ç êîìïîçèòà.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 135
Progressive Failure Analysis of Glass/Epoxy Composites ...
1. J. S. Schutz, “Properties of composite materials for cryogenic applications,”
Cryogenics, 38, Issue 1, 3–12 (1998).
2. D. E. Baynham, D. Evans, S. J. Gamage, et al., “Transverse mechanical
properties of glass reinforced composite materials at 4 K,” Cryogenics, 38,
Issue 1, 61–67 (1998).
3. Y. Shindo, H. Tokairin, K. Sanada, et al., “Compression behavior of glass-
cloth/epoxy laminates at cryogenic temperature,” Cryogenics, 39, Issue 10,
821–827 (1999).
4. X. F. Wang and J. H. Zhao, “Monte-Carlo simulation to the tensile mechanical
behaviors of unidirectional composites at low temperatures,” Cryogenics, 41,
Issue 9, 683–691 (2001).
5. K. H. Ip, P. K. Dutta, and D. Hui, “Effects of low temperature on the dynamic
moduli of thick composite beams with absorbed moisture,” Composites Part
B: Engineering, 32, Issue 7, 599–607 (2001).
6. S. Sánchez-Sáez, T. Gómez-del Rio, E. Barbero, et al., “Static behavior of
CFRPs at low temperatures,” Composite Part B: Engineering, 33, Issue 5,
383–390 (2002).
7. V. T. Bechel and R. Y. Kim, “Damage trends in cryogenically cycled carbon/
polymer composites,” Compos. Sci. Technol., 64, Issue 12,1773–1784 (2004).
8. R. Y. Kim and S. L. Donaldson, “Experimental and analytical studies on the
damage initiation in composite laminates at cryogenic temperature,” Compos.
Struct., 76, 62–66 (2006).
9. P. Ifju, D. Myers, and W. Schultz, “Residual stress and thermal expansion of
graphite epoxy laminates subjected to cryogenic temperatures,” Compos. Sci.
Technol., 66, 2449–2455 (2006).
10. P. Rupnowski, M. Gentz, and M. Kumosa, “Mechanical response of a
unidirectional graphite fiber/polyimide composite as a function of temperature,”
Compos. Sci. Technol., 66, 1045–1055 (2006).
11. M. G. Kim, S. G. Kang, C. G. Kim, and C. W. Kong, “Tensile response of
graphite/epoxy composite at low temperatures,” Compos. Struct., 79, No. 1,
84–89 (2007).
12. T. Takeda, Y. Shindo, and F. Narita, “Three-dimensional thermoelastic analysis
of cracked plain weave glass/epoxy composites at cryogenic temperatures,”
Compos. Sci. Technol., 64, 2353–2362 (2004).
13. Y. Shindo, K. Horiguchi, R. Wang, and H. Kudo, “Double cantilever beam
measurement and finite element analysis of cryogenic Mode I interlaminar
fracture toughness of glass-cloth/epoxy laminates,” J. Eng. Mater. Technol.,
123, 191–197 (2001).
14. R. J. Melcher and W. S. Johnson, “Mode I fracture toughness of an adhesively
bonded composite-composite joint in a cryogenic environment,” Compos. Sci.
Technol., 67, Issue 3-4, 501–506 (2007).
15. Y. Shindo, A. Inamoto, and F. Narita, “Characterization of Mode I fatigue
crack growth in GFRP woven laminates at low temperatures,” Acta Mater.,
53, 1389–1396 (2005).
136 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3
M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon
16. Y. Shindo, A. Inamoto, F. Narita, and K. Horiguchi, “Mode I fatigue
delamination growth in CFRP woven laminates at low temperatures,” Eng.
Fract. Mech., 73, 2080–2090 (2006).
17. S. Kumagai, Y. Shindo, and A. Inamoto, “Tension-tension fatigue behavior of
GFRP woven laminates at low temperatures,” Cryogenics, 45, Issue 2, 123–
128 (2005).
18. Y. Shindo, S. Takano, K. Horiguchi, and T. Sato, “Cryogenic fatigue behavior
of plain weave glass/epoxy composite laminates under tension-tension cycling,”
Cryogenics, 46, Issue 11, 794–798 (2006).
19. G. Labeas, S. Belesis, and D. Stamatelos, “Interaction of damage failure and
post-buckling behavior of composite plates with cut-outs by progressive
damage modeling,” Composites Part B: Engineering, 39, Issue 2, 304–315
(2008).
20. X. Liu and G. Wang, “Progressive failure analysis of bonded composite
repairs,” Compos. Struct., 81, 331–340 (2007).
21. Q. Zhao, S. V. Hoa,and S. V. Ouellette, “Progressive failure of triaxial woven
fabric (TWF) composites with open holes,” Compos. Struct., 65, 419–431
(2004).
22. B. M. Icten and R. Karakuzu, “Progressive failure analysis of pin-loaded
carbon-epoxy woven composite plates,” Compos. Sci. Technol., 62, 1259–
1271 (2002).
23. T. Takeda, S. Takano, Y. Shindo, and F. Nurita, “Deformation and progressive
failure behavior of woven-fabric-reinforced glass/epoxy composite laminates
under tensile loading at cryogenic temperatures,” Compos. Sci. Technol., 65,
1691–1702 (2005).
24. Y. Shindo, S. Takano, F. Narita, and K. Horiguchi, “Tensile and damage
behavior of plain weave glass/epoxy composites at cryogenic temperatures,”
Fusion Eng. Design, 81, Issue 20-22, 2479–2483 (2006).
25. G. Akhras and W. C. Li, “Progressive failure analysis of thick composite
plates using spline finite strip method,” Compos. Struct., 79, 34–43 (2007).
26. M. M. Shokrieh, M. A. Torabizadeh, and A. Fereidoon, “Progressive failure
analysis of composite plates,” in: Proc. of 8th Iranian Aerospace Society
Conference (Oct. 25–26, 2009, Esfahan).
27. ANSYS, Ver. 10, ANSYS Inc., Canonsburg, PA (2005).
28. M. M. Shokrieh, M. A. Torabizadeh,and A. Fereidoon, “An investigation on
damage of quasi-isotropic laminated composite,” in: Proc. of 18th Annual
International Conference on Mechanical Engineering, Tehran (2010).
29. A. K. Kaw, Mechanics of Composite Materials, Taylor and Francis Group,
LLC (2006).
30. M. M. Shokrieh, Progressive Fatigue Damage Modeling of Composite
Materials, Ph.D. Thesis, McGill University (1996).
Received 14. 09. 2010
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2012, ¹ 3 137
Progressive Failure Analysis of Glass/Epoxy Composites ...
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /All
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJDFFile false
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|