Possibility of 99mT c production at neutron generator

Possibility of application of the neutron generator with intensity of a thermal neutrons flux 10¹² n · cm⁻² · s⁻¹ for 99mT c production is considered. Estimations are made on the base of ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c nuclear reaction.

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Dovbnya, A.N., Kuplennikov, E.L., Tsymba, V.A., Krasil’nikov, V.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/96466
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Possibility of 99mT c production at neutron generator / A.N. Dovbnya, E.L.Kuplennikov, V.A. Tsymbal, V.V. Krasil’nikov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 64-66. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-96466
record_format dspace
spelling irk-123456789-964662016-03-17T03:02:37Z Possibility of 99mT c production at neutron generator Dovbnya, A.N. Kuplennikov, E.L. Tsymba, V.A. Krasil’nikov, V.V. Ядернo-физические методы и обработка данных Possibility of application of the neutron generator with intensity of a thermal neutrons flux 10¹² n · cm⁻² · s⁻¹ for 99mT c production is considered. Estimations are made on the base of ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c nuclear reaction. Розглянута можливiсть застосування нейтронного генератора з iнтенсивнiстю потока теплових нейтронiв 10¹² н/см²/c з метою отримання iзотопу 99mT c на основi ядерної реакцiї ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c. Рассмотрена возможность применения нейтронного генератора с интенсивностью потока тепловых нейтронов 10¹² н/см²/c для получения изотопа 99mT c на основе ядерной реакции ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c. 2009 Article Possibility of 99mT c production at neutron generator / A.N. Dovbnya, E.L.Kuplennikov, V.A. Tsymbal, V.V. Krasil’nikov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 64-66. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 28.20.-v; 25.40. Lw http://dspace.nbuv.gov.ua/handle/123456789/96466 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Dovbnya, A.N.
Kuplennikov, E.L.
Tsymba, V.A.
Krasil’nikov, V.V.
Possibility of 99mT c production at neutron generator
Вопросы атомной науки и техники
description Possibility of application of the neutron generator with intensity of a thermal neutrons flux 10¹² n · cm⁻² · s⁻¹ for 99mT c production is considered. Estimations are made on the base of ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c nuclear reaction.
format Article
author Dovbnya, A.N.
Kuplennikov, E.L.
Tsymba, V.A.
Krasil’nikov, V.V.
author_facet Dovbnya, A.N.
Kuplennikov, E.L.
Tsymba, V.A.
Krasil’nikov, V.V.
author_sort Dovbnya, A.N.
title Possibility of 99mT c production at neutron generator
title_short Possibility of 99mT c production at neutron generator
title_full Possibility of 99mT c production at neutron generator
title_fullStr Possibility of 99mT c production at neutron generator
title_full_unstemmed Possibility of 99mT c production at neutron generator
title_sort possibility of 99mt c production at neutron generator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2009
topic_facet Ядернo-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/96466
citation_txt Possibility of 99mT c production at neutron generator / A.N. Dovbnya, E.L.Kuplennikov, V.A. Tsymbal, V.V. Krasil’nikov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 64-66. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dovbnyaan possibilityof99mtcproductionatneutrongenerator
AT kuplennikovel possibilityof99mtcproductionatneutrongenerator
AT tsymbava possibilityof99mtcproductionatneutrongenerator
AT krasilnikovvv possibilityof99mtcproductionatneutrongenerator
first_indexed 2025-07-07T03:41:15Z
last_indexed 2025-07-07T03:41:15Z
_version_ 1836958012194947072
fulltext POSSIBILITY OF 99mTc PRODUCTION AT NEUTRON GENERATOR A.N. Dovbnya1, E.L. Kuplennikov1∗, V.A. Tsymbal1, V.V. Krasil’nikov2 1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine 2Belgorod State University, 308007, Belgorod, Russia (Received May 29, 2009) Possibility of application of the neutron generator with intensity of a thermal neutrons flux 1012 n · cm−2 · s−1 for 99mTc production is considered. Estimations are made on the base of 98Mo(n, γ)99Mo → 99mTc nuclear reaction. PACS: 28.20.-v; 25.40. Lw 1. INTRODUCTION Among the isotopes that applied in a nuclear medi- cine generating nuclides are very important. Gener- ating nuclides is a system of two connected between themselves radionuclides (RN), one of which - more short-living (daughter (D)) is constantly formed as a result of decay of another (maternal (M)) which has essentially larger a half-life period (T1/2). Among ra- dioisotope generators the greatest application in nu- clear medicine has the generator 99Mo → 99mTc. One of possible ways of the 99Mo production is a nuclear reaction 98Mo(n, γ)99Mo. The isotope 99Mo which is created by an irradiation, emits β− particles (100%) with the maximum energy 1210 keV and the main γ-quanta with energy 181.1, 739.4 keV (inten- sity of γ-lines Iγ = 6.08%, 12.1% respectively). As a result of β− decay 99Mo (T1/2 = 65.9 hours) trans- forms in 99mTc (T1/2 = 6.02 hours) which emits pho- tons with the basic energy 140.5 keV (Iγ = 87.7%). The present work is devoted a quantitative esti- mation of 99mTc production by created in NSC KIPT small-sized neutron generator (NG) with intensity of thermal neutron flux of 1012 n · cm−2 · s−1. 2. 99Mo YIELD IN (n, γ) REACTION One of the important parametres which characterize neutron penetration across real samples, is a macro- scopic cross-section Σ = ρσeffcm−1 [1], where ρ is a density of nuclei, σeff is an effective interaction cross- section. The quantity Σ is similar to a linear damping coefficient usefully determined for photon beam in a medium. It can be used for estimation of the neu- tron flux weakening at its interaction with a nuclear medium. Intensity of the neutron flux crossed a layer of substance (x), without the contribution of multiple scattering is: I(x) = I0e −Σtx , (1) where I0 is the intensity of the initial neutron beam. Σt is a total macroscopic cross-section characterising all of the processes of neutron interaction with sub- stance. The thickness of the target which is received in according to (1), is equal to x = 0.216 cm. The cal- culation is fulfilled at following parameters: molyb- denum density of the natural isotope composition (NatMo) is 10.2 g/cm3; the total interaction cross- section σt = 7.22 barn that corresponds to an average value of the thermal neutron energy 0.038 eV at the temperature T = 300 K; Σt = 0.462 cm−1; a reduc- tion of the neutron flux by a back wall of the sample is 10%. The number of 98Mo nuclei, containing in the tar- get, is calculated in according to the expression: N = 6.02 · 1023 · βm/A , (2) where β = 24.13% is 98Mo isotope content in a nat- ural molybdenum; m = 43.25 g is the target weight, A = 98 is a mass number. In this case N is equal to 6.41 · 1022 nuclei. For calculation of 99Mo isotope activity AM is stored in the sample during of an irradiation time tirr, the formula from [2] was used: AM = σI0N(1− e−λM ·tirr ), (3) where I0 = 0.95 · 1012 n/cm−2 · s−1 is an average quantity of a neutron flux in the irradiated sample, λM = 0.693/T1/2 = 2.92·10−6 s−1 is a radioactive de- cay constant of 99Mo, σ = 0.13 barn is the reaction cross-section on thermal neutrons. Expression (3) is written for a case when the incident particle beam is monoenergetic. The estimations are done for two expositions of irradiation: t (24) irr = 24, t (66) irr = 66 hours. At the above enumerated parameters, the activity of 99Mo is equal A (24) M = 17.6 · 108, A (66) M ∼ 0.4 · 1010 Bq ∼ 0.1 Ci and specific activity 4.07 · 107, 9.2 · 107 Bq/g correspondingly. ∗Corresponding author E-mail address: kupl@kipt.kharkov.ua 64 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5. Series: Nuclear Physics Investigations (52), p.64-66. It is interesting to compare this result to the data of other authors, for example, [3–5]. In work [3] it is shown that at molybdenum irradiation in the re- actor neutron flux 1015 n · cm−2 · s−1 within 5 days specific 99Mo activity can reach 14.5 Ci/g for nat- ural Mo. The calculations of specific activity of the data [3] carried out by the above described method with effective cross-section 0.5 barn [3] and neutron flux of 1012 n · cm−2 · s−1 give practically the same value. The specific activity of 47.5 mCi/g for 99Mo is obtained in [4]. In this case the neutron flux was 1013 n · cm−2 · s−1 and t (24) irr = 24 hours. An estima- tion of the data [4] for neutron flux 1012 n · cm−2 · s−1 gives specific activity which is different of the our value about 10%. The received results show that the technique of an estimation of 99Mo yield is correct enough and can be used for forecasting of the yield of others RN. 99Mo activity in 100Mo(γ, n)99Mo reaction was calculated in [5]. The following parameters were used: an electron beam energy - 20 MeV , an average beam current - 1 mA, a target - metallic NatMo, a sample thickness ≤ 15 g/cm2, an exposition of irradiation - 66 hours. The value of 99Mo activity was found of ∼ 0.8 Ci. As it was shown above, our estimation for the 99Mo activity in reaction 98Mo(n, γ)99Mo at the exposure 66 hours gives the activity of ∼ 0.1 Ci. It is visible that for the given conditions the activity predicted in the 100Mo(γ, n)99Mo reaction is bigger than in the 98Mo(n, γ)99Mo reaction. 3. THE 99mTc YIELD. DISCUSSION. At a decay of the maternal isotope, which has an ac- tivity AM , the daughter RN activity AD will reach quantity [4]: AD = AM λD λD − λM {1− exp [−(λD − λM )t]} , (4) where t – time of 99mTc production in mixture of matrernal RN after irradiation. Substitut- ing in (4) corresponding parameters: t = 24 hours, λM = 2.92 · 10−6s−1, λD = 3.19 · 10−5s−1, A (24) M = 17.6 · 108, A (66) M = 0.4 · 1010, and considering that only 82.4% of the 99Mo will be trans- formed in 99mTc [4] and Iγ of 99mTc 87.7%, we receive the 99mTc activity A (24) D = 12.84 · 108 and A (66) D = 31.80 · 108 Bq. For diagnostics of the vital person’s systems a cer- tain activity of 99mTc radioisotope [6] is required. For example, for research of cardiovascular system activity of ∼ 55 MBq is necessary, for diagnostics of the central nervous system one is ∼ 240 MBq, for scenogramma of a brain tumour one is ∼ 370 MBq etc. (By the way, according to the International Atomic Energy Agency experts an average diagnos- tic dose is 10 mCi). Thus, the 99mTc activity ac- cumulated for 24 hours is sufficient for inspection (depending on studied of a body or a life-support system) on the average from 4 to 23 and from 9 to 58 patients respectively. It is clear that in laboratory conditions the 99mTc activity may be somewhat smaller than in an ideal case as effectiveness of the isotope extraction is less than 1. Hence it is necessary to find ways for increas- ing of the 99mTc yield. For example, the yield can be increased: 1) in 4.1 times maximum applying the enriched target, containing the 98Mo isotope only; 2) almost 2 times as many at increasing the tar- get thickness up to 4.8 mm, that corresponds to 20% reducing flux of neutrons on the sample back side; 3) by exposition increase tirr > T1/2; 4) in case of simultaneous irradiation of more than one target, that is provided by the NG design. 4. CONCLUSIONS The possibility of the neutron generator application with the flux of thermal neutrons 1012 n · cm−2 · s−1 for the 99mTc production on the basis of the 98Mo(n, γ)99Mo nuclear reaction is considered. It is shown, that the neutron generator can in principle produce the 99mTc radioisotope with activity suffi- cient for application in nuclear medicine. This work is supported by STCU project P333. References 1. D. Blanc. Nuclei, particles, nuclear reactors. Moscow: ”Mir”, 1989, p.335 (in Russian). 2. O.F. Nemetz, Y.V. Gofman. Nuclear Physics Reference Book. Kiev: ”Naukova Dumka”, 1975, p.415 (in Russian). 3. A.A. Verevkin, N.G. Stervoedov, G.P. Kovtun. Production and application of short-lived iso- topes in medicine // Bulletin KhNU. Series: Nu- clei, Particles, Fields. 2006, N.745, p.54-64 (in Russian). 4. V.A. Sokolov. Generators of the short-lived iso- topes. Moscow: ”Atomizdat”, 1975, p.113 (in Russian). 5. A.N. Dovbnya, G.D. Pugachev, V.L. Uvarov et al. Receipt of powerful photon beams for pro- duction of medical radionuclides // Problems of Atomic Science and Technology. Series ”Nu- clear Physics Investigation”. 1997, N.4,5 (31,32), p.154-156. 6. P.A. Demchenko, V.A. Voronko, V.Ya. Mi- galenya, et al. Linear Accelerator Application for medical aims // Problems of Atomic Sci- ence and Technology. Series ”Nuclear Physics In- vestigation.” 1997, N.4,5 (31,32), p.168-170. (in Russian). 65 ВОЗМОЖНОСТЬ НАРАБОТКИ 99mTc НА НЕЙТРОННОМ ГЕНЕРАТОРЕ А.Н. Довбня, Э.Л. Купленников, В.А. Цымбал, В.В. Красильников Рассмотрена возможность применения нейтронного генератора с интенсивностью потока тепловых ней- тронов 1012 н/см2/c для получения изотопа 99mTc на основе ядерной реакции 98Mo(n, γ)99Mo → 99mTc. МОЖЛИВIСТЬ НАПРАЦЮВАННЯ 99mTc НА НЕЙТРОННОМУ ГЕНЕРАТОРI А.М. Довбня, Е.Л. Купленников, В.А. Цимбал, В.В. Красильников Розглянута можливiсть застосування нейтронного генератора з iнтенсивнiстю потока теплових ней- тронiв 1012 н/см2/c з метою отримання iзотопу 99mTc на основi ядерної реакцiї 98Mo(n, γ)99Mo → 99mTc. 66