Possibility of 99mT c production at neutron generator
Possibility of application of the neutron generator with intensity of a thermal neutrons flux 10¹² n · cm⁻² · s⁻¹ for 99mT c production is considered. Estimations are made on the base of ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c nuclear reaction.
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/96466 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Possibility of 99mT c production at neutron generator / A.N. Dovbnya, E.L.Kuplennikov, V.A. Tsymbal, V.V. Krasil’nikov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 64-66. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-96466 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-964662016-03-17T03:02:37Z Possibility of 99mT c production at neutron generator Dovbnya, A.N. Kuplennikov, E.L. Tsymba, V.A. Krasil’nikov, V.V. Ядернo-физические методы и обработка данных Possibility of application of the neutron generator with intensity of a thermal neutrons flux 10¹² n · cm⁻² · s⁻¹ for 99mT c production is considered. Estimations are made on the base of ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c nuclear reaction. Розглянута можливiсть застосування нейтронного генератора з iнтенсивнiстю потока теплових нейтронiв 10¹² н/см²/c з метою отримання iзотопу 99mT c на основi ядерної реакцiї ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c. Рассмотрена возможность применения нейтронного генератора с интенсивностью потока тепловых нейтронов 10¹² н/см²/c для получения изотопа 99mT c на основе ядерной реакции ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c. 2009 Article Possibility of 99mT c production at neutron generator / A.N. Dovbnya, E.L.Kuplennikov, V.A. Tsymbal, V.V. Krasil’nikov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 64-66. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 28.20.-v; 25.40. Lw http://dspace.nbuv.gov.ua/handle/123456789/96466 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Ядернo-физические методы и обработка данных Ядернo-физические методы и обработка данных |
spellingShingle |
Ядернo-физические методы и обработка данных Ядернo-физические методы и обработка данных Dovbnya, A.N. Kuplennikov, E.L. Tsymba, V.A. Krasil’nikov, V.V. Possibility of 99mT c production at neutron generator Вопросы атомной науки и техники |
description |
Possibility of application of the neutron generator with intensity of a thermal neutrons flux 10¹² n · cm⁻² · s⁻¹ for
99mT c production is considered. Estimations are made on the base of ⁹⁸Mo(n, γ) ⁹⁹Mo → 99mT c nuclear reaction. |
format |
Article |
author |
Dovbnya, A.N. Kuplennikov, E.L. Tsymba, V.A. Krasil’nikov, V.V. |
author_facet |
Dovbnya, A.N. Kuplennikov, E.L. Tsymba, V.A. Krasil’nikov, V.V. |
author_sort |
Dovbnya, A.N. |
title |
Possibility of 99mT c production at neutron generator |
title_short |
Possibility of 99mT c production at neutron generator |
title_full |
Possibility of 99mT c production at neutron generator |
title_fullStr |
Possibility of 99mT c production at neutron generator |
title_full_unstemmed |
Possibility of 99mT c production at neutron generator |
title_sort |
possibility of 99mt c production at neutron generator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2009 |
topic_facet |
Ядернo-физические методы и обработка данных |
url |
http://dspace.nbuv.gov.ua/handle/123456789/96466 |
citation_txt |
Possibility of 99mT c production at neutron generator / A.N. Dovbnya, E.L.Kuplennikov, V.A. Tsymbal, V.V. Krasil’nikov // Вопросы атомной науки и техники. — 2009. — № 5. — С. 64-66. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dovbnyaan possibilityof99mtcproductionatneutrongenerator AT kuplennikovel possibilityof99mtcproductionatneutrongenerator AT tsymbava possibilityof99mtcproductionatneutrongenerator AT krasilnikovvv possibilityof99mtcproductionatneutrongenerator |
first_indexed |
2025-07-07T03:41:15Z |
last_indexed |
2025-07-07T03:41:15Z |
_version_ |
1836958012194947072 |
fulltext |
POSSIBILITY OF 99mTc PRODUCTION AT NEUTRON
GENERATOR
A.N. Dovbnya1, E.L. Kuplennikov1∗, V.A. Tsymbal1, V.V. Krasil’nikov2
1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
2Belgorod State University, 308007, Belgorod, Russia
(Received May 29, 2009)
Possibility of application of the neutron generator with intensity of a thermal neutrons flux 1012 n · cm−2 · s−1 for
99mTc production is considered. Estimations are made on the base of 98Mo(n, γ)99Mo → 99mTc nuclear reaction.
PACS: 28.20.-v; 25.40. Lw
1. INTRODUCTION
Among the isotopes that applied in a nuclear medi-
cine generating nuclides are very important. Gener-
ating nuclides is a system of two connected between
themselves radionuclides (RN), one of which - more
short-living (daughter (D)) is constantly formed as a
result of decay of another (maternal (M)) which has
essentially larger a half-life period (T1/2). Among ra-
dioisotope generators the greatest application in nu-
clear medicine has the generator 99Mo → 99mTc.
One of possible ways of the 99Mo production is a
nuclear reaction 98Mo(n, γ)99Mo. The isotope 99Mo
which is created by an irradiation, emits β− particles
(100%) with the maximum energy 1210 keV and the
main γ-quanta with energy 181.1, 739.4 keV (inten-
sity of γ-lines Iγ = 6.08%, 12.1% respectively). As a
result of β− decay 99Mo (T1/2 = 65.9 hours) trans-
forms in 99mTc (T1/2 = 6.02 hours) which emits pho-
tons with the basic energy 140.5 keV (Iγ = 87.7%).
The present work is devoted a quantitative esti-
mation of 99mTc production by created in NSC KIPT
small-sized neutron generator (NG) with intensity of
thermal neutron flux of 1012 n · cm−2 · s−1.
2. 99Mo YIELD IN (n, γ) REACTION
One of the important parametres which characterize
neutron penetration across real samples, is a macro-
scopic cross-section Σ = ρσeffcm−1 [1], where ρ is a
density of nuclei, σeff is an effective interaction cross-
section. The quantity Σ is similar to a linear damping
coefficient usefully determined for photon beam in a
medium. It can be used for estimation of the neu-
tron flux weakening at its interaction with a nuclear
medium.
Intensity of the neutron flux crossed a layer of
substance (x), without the contribution of multiple
scattering is:
I(x) = I0e
−Σtx , (1)
where I0 is the intensity of the initial neutron beam.
Σt is a total macroscopic cross-section characterising
all of the processes of neutron interaction with sub-
stance.
The thickness of the target which is received in
according to (1), is equal to x = 0.216 cm. The cal-
culation is fulfilled at following parameters: molyb-
denum density of the natural isotope composition
(NatMo) is 10.2 g/cm3; the total interaction cross-
section σt = 7.22 barn that corresponds to an average
value of the thermal neutron energy 0.038 eV at the
temperature T = 300 K; Σt = 0.462 cm−1; a reduc-
tion of the neutron flux by a back wall of the sample
is 10%.
The number of 98Mo nuclei, containing in the tar-
get, is calculated in according to the expression:
N = 6.02 · 1023 · βm/A , (2)
where β = 24.13% is 98Mo isotope content in a nat-
ural molybdenum; m = 43.25 g is the target weight,
A = 98 is a mass number. In this case N is equal to
6.41 · 1022 nuclei.
For calculation of 99Mo isotope activity AM is
stored in the sample during of an irradiation time
tirr, the formula from [2] was used:
AM = σI0N(1− e−λM ·tirr ), (3)
where I0 = 0.95 · 1012 n/cm−2 · s−1 is an average
quantity of a neutron flux in the irradiated sample,
λM = 0.693/T1/2 = 2.92·10−6 s−1 is a radioactive de-
cay constant of 99Mo, σ = 0.13 barn is the reaction
cross-section on thermal neutrons. Expression (3) is
written for a case when the incident particle beam is
monoenergetic.
The estimations are done for two expositions of
irradiation: t
(24)
irr = 24, t
(66)
irr = 66 hours. At the
above enumerated parameters, the activity of 99Mo
is equal A
(24)
M = 17.6 · 108, A
(66)
M ∼ 0.4 · 1010 Bq ∼
0.1 Ci and specific activity 4.07 · 107, 9.2 · 107 Bq/g
correspondingly.
∗Corresponding author E-mail address: kupl@kipt.kharkov.ua
64 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5.
Series: Nuclear Physics Investigations (52), p.64-66.
It is interesting to compare this result to the data
of other authors, for example, [3–5]. In work [3] it
is shown that at molybdenum irradiation in the re-
actor neutron flux 1015 n · cm−2 · s−1 within 5 days
specific 99Mo activity can reach 14.5 Ci/g for nat-
ural Mo. The calculations of specific activity of the
data [3] carried out by the above described method
with effective cross-section 0.5 barn [3] and neutron
flux of 1012 n · cm−2 · s−1 give practically the same
value. The specific activity of 47.5 mCi/g for 99Mo
is obtained in [4]. In this case the neutron flux was
1013 n · cm−2 · s−1 and t
(24)
irr = 24 hours. An estima-
tion of the data [4] for neutron flux 1012 n · cm−2 · s−1
gives specific activity which is different of the our
value about 10%. The received results show that the
technique of an estimation of 99Mo yield is correct
enough and can be used for forecasting of the yield
of others RN.
99Mo activity in 100Mo(γ, n)99Mo reaction was
calculated in [5]. The following parameters were used:
an electron beam energy - 20 MeV , an average beam
current - 1 mA, a target - metallic NatMo, a sample
thickness ≤ 15 g/cm2, an exposition of irradiation -
66 hours. The value of 99Mo activity was found of
∼ 0.8 Ci.
As it was shown above, our estimation for the
99Mo activity in reaction 98Mo(n, γ)99Mo at the
exposure 66 hours gives the activity of ∼ 0.1 Ci. It
is visible that for the given conditions the activity
predicted in the 100Mo(γ, n)99Mo reaction is bigger
than in the 98Mo(n, γ)99Mo reaction.
3. THE 99mTc YIELD. DISCUSSION.
At a decay of the maternal isotope, which has an ac-
tivity AM , the daughter RN activity AD will reach
quantity [4]:
AD = AM
λD
λD − λM
{1− exp [−(λD − λM )t]} , (4)
where t – time of 99mTc production in mixture
of matrernal RN after irradiation. Substitut-
ing in (4) corresponding parameters: t = 24 hours,
λM = 2.92 · 10−6s−1, λD = 3.19 · 10−5s−1,
A
(24)
M = 17.6 · 108, A
(66)
M = 0.4 · 1010, and considering
that only 82.4% of the 99Mo will be trans-
formed in 99mTc [4] and Iγ of 99mTc 87.7%, we
receive the 99mTc activity A
(24)
D = 12.84 · 108 and
A
(66)
D = 31.80 · 108 Bq.
For diagnostics of the vital person’s systems a cer-
tain activity of 99mTc radioisotope [6] is required.
For example, for research of cardiovascular system
activity of ∼ 55 MBq is necessary, for diagnostics of
the central nervous system one is ∼ 240 MBq, for
scenogramma of a brain tumour one is ∼ 370 MBq
etc. (By the way, according to the International
Atomic Energy Agency experts an average diagnos-
tic dose is 10 mCi). Thus, the 99mTc activity ac-
cumulated for 24 hours is sufficient for inspection
(depending on studied of a body or a life-support
system) on the average from 4 to 23 and from 9 to 58
patients respectively.
It is clear that in laboratory conditions the 99mTc
activity may be somewhat smaller than in an ideal
case as effectiveness of the isotope extraction is less
than 1. Hence it is necessary to find ways for increas-
ing of the 99mTc yield. For example, the yield can be
increased:
1) in 4.1 times maximum applying the enriched
target, containing the 98Mo isotope only;
2) almost 2 times as many at increasing the tar-
get thickness up to 4.8 mm, that corresponds to 20%
reducing flux of neutrons on the sample back side;
3) by exposition increase tirr > T1/2;
4) in case of simultaneous irradiation of more than
one target, that is provided by the NG design.
4. CONCLUSIONS
The possibility of the neutron generator application
with the flux of thermal neutrons 1012 n · cm−2 · s−1
for the 99mTc production on the basis of the
98Mo(n, γ)99Mo nuclear reaction is considered. It
is shown, that the neutron generator can in principle
produce the 99mTc radioisotope with activity suffi-
cient for application in nuclear medicine.
This work is supported by STCU project P333.
References
1. D. Blanc. Nuclei, particles, nuclear reactors.
Moscow: ”Mir”, 1989, p.335 (in Russian).
2. O.F. Nemetz, Y.V. Gofman. Nuclear Physics
Reference Book. Kiev: ”Naukova Dumka”, 1975,
p.415 (in Russian).
3. A.A. Verevkin, N.G. Stervoedov, G.P. Kovtun.
Production and application of short-lived iso-
topes in medicine // Bulletin KhNU. Series: Nu-
clei, Particles, Fields. 2006, N.745, p.54-64 (in
Russian).
4. V.A. Sokolov. Generators of the short-lived iso-
topes. Moscow: ”Atomizdat”, 1975, p.113 (in
Russian).
5. A.N. Dovbnya, G.D. Pugachev, V.L. Uvarov et
al. Receipt of powerful photon beams for pro-
duction of medical radionuclides // Problems
of Atomic Science and Technology. Series ”Nu-
clear Physics Investigation”. 1997, N.4,5 (31,32),
p.154-156.
6. P.A. Demchenko, V.A. Voronko, V.Ya. Mi-
galenya, et al. Linear Accelerator Application
for medical aims // Problems of Atomic Sci-
ence and Technology. Series ”Nuclear Physics In-
vestigation.” 1997, N.4,5 (31,32), p.168-170. (in
Russian).
65
ВОЗМОЖНОСТЬ НАРАБОТКИ 99mTc НА НЕЙТРОННОМ ГЕНЕРАТОРЕ
А.Н. Довбня, Э.Л. Купленников, В.А. Цымбал, В.В. Красильников
Рассмотрена возможность применения нейтронного генератора с интенсивностью потока тепловых ней-
тронов 1012 н/см2/c для получения изотопа 99mTc на основе ядерной реакции 98Mo(n, γ)99Mo → 99mTc.
МОЖЛИВIСТЬ НАПРАЦЮВАННЯ 99mTc НА НЕЙТРОННОМУ ГЕНЕРАТОРI
А.М. Довбня, Е.Л. Купленников, В.А. Цимбал, В.В. Красильников
Розглянута можливiсть застосування нейтронного генератора з iнтенсивнiстю потока теплових ней-
тронiв 1012 н/см2/c з метою отримання iзотопу 99mTc на основi ядерної реакцiї 98Mo(n, γ)99Mo → 99mTc.
66
|