Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine
Consideration is given to the possibility of 103P d radionuclide production in nuclear reactions on protons and deuterons at the cyclotron CV −28, for a subsequent use of the radionuclide in medicine, in particular, for brachytherapy. Activity estimates of 103P d produced on both the internal and...
Gespeichert in:
Datum: | 2009 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/96468 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine / Yu.T. Petrusenko, A.G. Lymar’, L.I. Nikolaichuk, T.A. Ponomarenko, A.I. Tutubalin, A.G. Shepelev // Вопросы атомной науки и техники. — 2009. — № 5. — С. 60-63. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-96468 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-964682016-03-17T23:03:51Z Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine Petrusenko, Yu.T. Lymar’, A.G. Nikolaichuk, L.I. Ponomarenko, T.A. Tutubalin, A.I. Shepelev, A.G. Ядернo-физические методы и обработка данных Consideration is given to the possibility of 103P d radionuclide production in nuclear reactions on protons and deuterons at the cyclotron CV −28, for a subsequent use of the radionuclide in medicine, in particular, for brachytherapy. Activity estimates of 103P d produced on both the internal and external targets of the cyclotron CV − 28 are given. The energy transferred by the proton/deuteron beam to the target under irradiation is determined. Possible ways of heat removal from the target substrate are considered. У роботi розглядується можливiсть здобуття радiонуклiда паладiй-103 на циклотронi CV-28 в реакцiях на протонах i дейтронах для використання його в медицинi, для брахiтерапiї зокрема. Приведено розрахованi оцiнки активностей напрацьованого 103P d на внутрiшнiй i зовнiшнiй мiшенях циклотрона CV-28. Визначена енергiя, яка передається пучком протонiв i дейтронiв мiшенi при опромiненнi. Обговорюється можливiсть вiдведення тепла вiд пiдкладки мiшеней. В работе рассматривается возможность получения радионуклида палладий-103 на циклотроне CV-28 в реакциях на протонах и дейтронах для использования его в медицине, для брахитерапии в частности. Приведены рассчитанные оценки активностей наработанного 103P d на внутренней и наружной мишенях циклотрона CV-28. Определена энергия, передаваемая пучком протонов и дейтронов мишени при облучении. Обсуждается возможность отвода тепла от подложки мишеней. 2009 Article Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine / Yu.T. Petrusenko, A.G. Lymar’, L.I. Nikolaichuk, T.A. Ponomarenko, A.I. Tutubalin, A.G. Shepelev // Вопросы атомной науки и техники. — 2009. — № 5. — С. 60-63. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 621 039. 8 http://dspace.nbuv.gov.ua/handle/123456789/96468 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Ядернo-физические методы и обработка данных Ядернo-физические методы и обработка данных |
spellingShingle |
Ядернo-физические методы и обработка данных Ядернo-физические методы и обработка данных Petrusenko, Yu.T. Lymar’, A.G. Nikolaichuk, L.I. Ponomarenko, T.A. Tutubalin, A.I. Shepelev, A.G. Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine Вопросы атомной науки и техники |
description |
Consideration is given to the possibility of 103P d radionuclide production in nuclear reactions on protons and
deuterons at the cyclotron CV −28, for a subsequent use of the radionuclide in medicine, in particular, for brachytherapy.
Activity estimates of 103P d produced on both the internal and external targets of the cyclotron CV − 28 are
given. The energy transferred by the proton/deuteron beam to the target under irradiation is determined. Possible
ways of heat removal from the target substrate are considered. |
format |
Article |
author |
Petrusenko, Yu.T. Lymar’, A.G. Nikolaichuk, L.I. Ponomarenko, T.A. Tutubalin, A.I. Shepelev, A.G. |
author_facet |
Petrusenko, Yu.T. Lymar’, A.G. Nikolaichuk, L.I. Ponomarenko, T.A. Tutubalin, A.I. Shepelev, A.G. |
author_sort |
Petrusenko, Yu.T. |
title |
Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine |
title_short |
Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine |
title_full |
Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine |
title_fullStr |
Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine |
title_full_unstemmed |
Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine |
title_sort |
estimation of palladium-103 radionuclide producibility at the cyclotron cv-28 for nuclear medicine |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2009 |
topic_facet |
Ядернo-физические методы и обработка данных |
url |
http://dspace.nbuv.gov.ua/handle/123456789/96468 |
citation_txt |
Estimation of palladium-103 radionuclide producibility at the cyclotron CV-28 for nuclear medicine / Yu.T. Petrusenko, A.G. Lymar’, L.I. Nikolaichuk, T.A. Ponomarenko, A.I. Tutubalin, A.G. Shepelev // Вопросы атомной науки и техники. — 2009. — № 5. — С. 60-63. — Бібліогр.: 13 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT petrusenkoyut estimationofpalladium103radionuclideproducibilityatthecyclotroncv28fornuclearmedicine AT lymarag estimationofpalladium103radionuclideproducibilityatthecyclotroncv28fornuclearmedicine AT nikolaichukli estimationofpalladium103radionuclideproducibilityatthecyclotroncv28fornuclearmedicine AT ponomarenkota estimationofpalladium103radionuclideproducibilityatthecyclotroncv28fornuclearmedicine AT tutubalinai estimationofpalladium103radionuclideproducibilityatthecyclotroncv28fornuclearmedicine AT shepelevag estimationofpalladium103radionuclideproducibilityatthecyclotroncv28fornuclearmedicine |
first_indexed |
2025-07-07T03:41:21Z |
last_indexed |
2025-07-07T03:41:21Z |
_version_ |
1836958018648932352 |
fulltext |
ESTIMATION OF PALLADIUM-103 RADIONUCLIDE
PRODUCIBILITY AT THE CYCLOTRON CV-28 FOR
NUCLEAR MEDICINE
Yu.T. Petrusenko, A.G. Lymar’, L.I. Nikolaichuk, ∗
T.A. Ponomarenko, A.I. Tutubalin, A.G. Shepelev
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received July 8, 2009)
Consideration is given to the possibility of 103Pd radionuclide production in nuclear reactions on protons and
deuterons at the cyclotron CV −28, for a subsequent use of the radionuclide in medicine, in particular, for brachyther-
apy. Activity estimates of 103Pd produced on both the internal and external targets of the cyclotron CV − 28 are
given. The energy transferred by the proton/deuteron beam to the target under irradiation is determined. Possible
ways of heat removal from the target substrate are considered.
PACS: 621 039. 8
1. INTRODUCTION
Currently, there has been a considerable growth
in the diagnostics of human diseases with the help of
radioisotope injection into the human body (radionu-
clide diagnostics). Radionuclides are widely used in
nuclear medicine for both the diagnostics and the
treatment of different diseases [1, 2].
The prostate gland cancer is the most frequently
occurring form of malignant tumor of men. The
treatment may include a temporary implantation of
radioactive source (radionuclide) for a certain base
period, after which it is extracted from the body.
As an alternative, the radioactive source may be im-
planted permanently into the patient’s body, where
it stays until it becomes weak for the pre-calculated
time (brachytherapy). The use of temporary or per-
manent implantation is dependent on the type of
the isotope chosen, the duration and intensity of re-
quired treatment. Compared to temporary radioac-
tive sources, permanent implants for the treatment
of prostate gland comprise radioisotopes that have a
relatively short half-life and a low energy radiation.
These are, for example, iodine-125 (half-life period
T1/2 = 60 days) or palladium-103 (T1/2 = 17 days).
The radioisotopes are usually placed inside a sealed
container made from a biocompatible material (e.g.,
titanium) in the shape of a ”grain”, which is then
implanted. Generally, about 50 to 120 such grains
are introduced into the patient’s body. They are
arranged as a three-dimensional array formed by
pricking numerously with a needle, which introduces
the in-line grains. The radioactive source positioned
in this way in the vicinity of the body’s zone to be
treated. The advantage of this technique is that high
radiation doses can be delivered to the site of treat-
ment at one time with relatively low radiation doses
for the surrounding or intermediate healthy tissues.
Up to now, there has been no definite decision as
to which of the radionuclides (125I or 103Pd) should
be preferred in the treatment of prostate or pancreas.
In recent years, there has been an appreciable
increase in the number of patients who threw off
the prostate disease by the method of permanent
brachytherapy (over 40 000 people in 1998 in the
USA, and more than a 50% increase of recovered in
2006). Palladium-103 was proposed for interstitial
implantation in 1958 [3]. And only in 1987 it became
commercially possible to encapsulate palladium-103
sources, with 10 accelerators designed for their pro-
duction. Regular communications on the satisfactory
outcome of palladium-103 application in brachyther-
apy are published by the Brachytherapy Society of
America [4].
2. PRODUCTION OF PALLADIUM-103 AT
THE CYCLOTRON CV-28
Palladium-103 radionuclide is produced at the
accelerators at rather low energies. Generally,
palladium-103 can be produced in the reaction
102Pd(n, γ)103Pd, which is based on natural pal-
ladium containing 1% of 102Pd, and shows rather
high neutron capture cross sections. However, due
to a low content of 102Pd, this technique does not
yield short-lived palladium-103 isotope in sufficient
quantities that are required for its regular use in
medical 2- or 3-week cycles. Therefore, for the pro-
duction of palladium-103 use was made of the reac-
tion 103Rh(p, n) 103Pd with a low threshold energy
∗Corresponding author E-mail address: nikolaichuk@kipt.kharkov.ua
60 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5.
Series: Nuclear Physics Investigations (52), p.60-63.
Ethr = 1.35 MeV . The method is based on ir-
radiation of metallic rhodium targets with protons.
The yield of palladium-103 isotope is strongly de-
pendent on the proton energy, reaching its maximum
at the highest attainable energies at the cyclotron
CV-28 (21 to 24 MeV ). This procedure is followed
by a labor-intensive chemical separation of the ra-
dionuclide from an expensive metallic rhodium tar-
get. An increase in the incident proton energy above
18 MeV in the production of palladium-103 has no
sense for several reasons. Over this energy, an ad-
ditional reaction yield is negligibly small (a gain in
yield is less than 4% within the 18...20 MeV energy
range). However, at these energies the contamination
with 101Pd, 101m, 101g, 102m, 102gRh nuclides becomes
appreciable [3].
The nuclear data on cross sections for this reac-
tion, on the yield from a thick target and on possible
impurities occurring during the use of the reaction
on rhodium are few in number, especially at energies
higher than 12 MeV .
The mentioned reactions were investigated from
threshold energies up to 23 MeV (see ref. [5]).
The production of palladium-103 radioisotope
in the reaction 103Rh(d, 2n)103Pd is an alternative
and more promising method [6]. For optimization
of palladium-103 production from rhodium-103 the
cross sections of two main reactions 103Rh(p, n)103Pd
and 103Rh(d, 2n)103Pd are of importance. The yields
from thick targets, obtained from the corresponding
cross sections at a deuteron energy of 20 MeV are
nearly two times higher than the yields at exposure
to protons [6]. For palladium production, an increase
in the deuteron energy beyond 20 MeV is unbeneficial
for two reasons: an additional yield at higher ener-
gies is insignificant (only a 10% increase at energies
between 20 and 22 MeV ). However, similarly to the
case of proton irradiation, the 101m, 101g, 102m, 102gRh
impurities become increasingly important, because
the cross sections of their production quickly grow
at energies higher than 20 MeV . At the stage of
rhodium target recovery, these impurities separate
from palladium, however, the accumulation of these
long-lived contaminating radionuclides can be ob-
served with further recovery of rhodium targets.
At present, palladium-103 radionuclide is pro-
duced almost without exception during irradiation of
the rhodium target with protons. Experimental data
on the reaction cross sections have been collected and
published elsewhere [3].
In the nearest future, the NSC KIPT team intends
to put into operation the isochronous cyclotron CV-
28 with an adjustable energy of light ions p, d, 3He,
4He. Below, Table gives the characteristics of this
cyclotron [7].
Accelerated particles Accelerated particle energies, External target current, Internal target current,
MeV µA µA
p 2-24 40-60 200
d 4-14 50-100 300
3He 6-36 5-50 135
4He 8-28 6-40 90
In connection with this it appears of interest to es-
timate the possibility of palladium-103 radionuclide
production at this cyclotron for a subsequent use in
medicine, in particular for brachytherapy.
From the above-given analysis it is evident that
the palladium production at the cyclotron CV-28 can
be realized from both the reaction 103Rh(p, n)103Pd
and the reaction 103Rh(d, 2n)103Pd on the internal
and external targets of the cyclotron. As the energy
increases over 18 MeV for protons and over 20MeV
for deuterons, then, as mentioned above, deeper nu-
clear reaction channels begin to open. Apart from the
particle energy, the beam particle current and the ir-
radiation duration are also the essential factors for
radionuclide production.
Here we consider the possibility of palladium-
103 production at the KIPT cyclotron CV-28 from
both the reaction 103Rh(p, n)103Pa and the reaction
103Rh(d, 2n)103Pd on the internal and external tar-
gets of the cyclotron.
Since the activity yield, which is determined as
the activity produced under irradiation for 1 hour at
1 µA current, and which is a convenient parameter
that characterizes the rate of radionuclide produc-
tion, we have calculated the activities of palladium-
103 produced for the both cases of radionuclide pro-
duction in proton and deuteron reactions for the in-
ternal and external targets of the cyclotron. The en-
ergy transferred by the proton/deuteron beam to the
rhodium target under irradiation has also been cal-
culated for the both cases.
3. ESTIMATION OF ACTIVITY FOR
PALLADIUM-103 PRODUCED IN
PROTON AND DEUTERON REACTIONS
AT THE CYCLOTRON CV-28
The 103Rh(p, n)103Pd reaction cross sections
have been measured in ref. [3] in the proton energy
range from 14.7 to 29.4 MeV . The excitation func-
tion of the reaction was determined in the energy
range from (4.8±1.0) to (25±0.4) MeV by fitting to
the experimental data newly obtained in [3] and those
existed previously [11, 12]. On the strength of the
mentioned data the radionuclide yields from a thick
target were calculated. We have used the data to es-
timate the activity of radionuclides produced at the
cyclotron CV-28. Thus, according to our estimates,
61
for the proton energy chosen to be Ep = 18 MeV
and currents Ip = 200 µA and Ip = 60 µA on internal
and external targets of the cyclotron, respectively,
the activities 2.05 GBq (55.35 mCi) and 0.61 GBq
(16.6 mCi) can be, correspondingly, attained for 1
hour of irradiation.
For the chosen proton energy and rhodium target,
the specific activity yield, i.e., activity per unit target
mass, was calculated in the assumption of uniform ac-
tivity distribution in the radius and thickness of the
target. At target diameter d = 1 cm and the target
thickness equal to the proton range in rhodium at en-
ergy E = 18 MeV the specific activity in the internal
and external targets exposed to radiation will make
up B = 0.1 mCi/mg and B = 0.03 mCi/mg, respec-
tively. In this case, the target thickness should be
somewhat greater than the proton range in rhodium
equal to 0.7003 g · cm−2 or 564.3 µm [3].
On this basis, with production of
palladium-103 radionuclide in the deuteron reac-
tion 103Rh(d, 2n) 103 we have chosen the deuteron
energy to be 14 MeV . The reaction cross sections
were measured in work [6] at deuteron energies of
15.3 MeV and 20.5 MeV . The excitation function
was determined by fitting to already available theo-
retical calculations [13] and to the experimental data
recently measured in [6] in the energy range from
(4.1 ± 1.0) to (20.2 ± 0.2)MeV . As in the case of
proton irradiation, the radionuclide yields from thick
targets, calculated from the excitation function [5],
were used to estimate the palladium radionuclide ac-
tivities, which might be produced at the cyclotron
CV-28 at the deuteron energy Ed = 14 MeV and
deuteron currents Id = 300 µA and Id = 100 µA in
the internal and external targets, respectively. We
have obtained that for 1 hour of irradiation, activ-
ities 3.09 and 1.03 GBq (or 83.5 and 27.8 mCi) can
be attained on internal and external targets of the
cyclotron, respectively.
The yield of specific activity of palladium-103 ra-
dionuclide produced from the deuteron reaction was
calculated in a similar way. In this case, the deuteron
range in rhodium is calculated from the proton range
by the relation given in paper [10] as
Rd =
md
mp
Rp
(
mp
md
E
)
,
where Rd and Rp are the ranges, while md and mp
are the masses of the deuteron and the proton, re-
spectively.
At deuteron energy Ed = 14 MeV the range Rd
will be equal to 0.2926 g/cm2 or 235.8 µm.
The specific activity of palladium-103 at the beam
diameter d=1 cm will be B = 0.37 mCi/mg and
B = 0.12 mCi/mg on internal and external targets
of the cyclotron, respectively.
The target thickness must be somewhat greater
than the deuteron range in rhodium.
The resulting total radionuclide activity is limited
only by the heat power that can be dissipated on in-
ternal cyclotron targets. The energy transferred by
the proton beam to the target under irradiation and
converted mainly to heat will attain 1.08 kW · h and
3.6 kW · h on the external and internal targets, re-
spectively. At irradiation with deuterons, the energy
released on the external and internal targets will be
1.4 kW · h and 4.2 kW · h, correspondingly. Though
the melting temperature of rhodium is high (1963◦C),
it would be necessary, when working, to remove the
heat from high heat conduction target backing by
cooling them with a heat carrier (e.g., water).
The manufacture of a water-cooled rhodium tar-
get that permits the dissipation of high heat energy
presents difficulties. So the heat removal from the
target to be exposed to protons and deuterons at the
cyclotron CV-28 is a rather complicated but solvable
problem.
Thus in ref. [8] it was shown that the use of an
external water-cooled rhodium target of certain de-
sign and its positioning at an angle to the main beam
trajectory make it possible to dissipate up to 2 kW
of heat energy.
A more considerable heat removal from 6 up to
12 kW (current 400 µA and the proton irradiation
energy 30 MeV ) was realized with some substantial
modifications in the design of a set of targets and
with a special method of target cooling with water
by means of a ducting system [9].
4. CONCLUSIONS
The present estimates of palladium-103 radionu-
clide activities point to a real possibility of production
of the mentioned radionuclide on internal and exter-
nal targets of the NSC KIPT cyclotron CV-28, using
both proton and deuteron reactions.
If the irradiation run lasts 10 hours, then with the
reaction on deuterons the total activity of the result-
ing palladium-103 makes 0.835 and 0.276 Ci on the
internal and external cyclotron targets, respectively,
while in the case of the proton reaction it makes 0.553
and 0.166 Ci on the internal and external targets, re-
spectively.
Therefore, with the use of the deuteron reaction,
the cyclotron CV-28 can annually produce about
200 Ci per an. on the internal target and about
100 Ci per an. on the external cyclotron target. If
it is remembered that one run of brachytherapy con-
sumes about 50 to 70 mCi, then it can be easily seen
that the amount of the activity produced will be suf-
ficient to carry out about 2000 brachytherapy runs
for the patients.
At an average price of about 50 hryvnyas
(∼ 10 U.S. dollars) for 1mCi of palladium-103, the
annual capacity of the complex under discussion may
be worth of 1...2 million hryvnyas.
References
1. V.Yu. Baranov. ”Isotopes” properties, produc-
tion, applications. Moscow: ”Nauka”, ”Fizmat.
Lit.”, 2005, p.328 (in Russian).
62
2. Yu.T. Petrusenko, A.G. Lymar’, L.I. Niko-
laichuk, et al. On production of ultrashort-
and shortlived isotopes at the cyclotron CV-
28 for nuclear medicine // Voprosy atomnoj
nauki i tekhniki. Ser. ”Yaderno-Fizicheskie issle-
dovaniya”, 2009, N3(51), p.75.
3. A. Hermanne, M. Sonck, A. Fenyveci, et al.
Study on production of 103Pd and characterisa-
tion of possible contaminants in proton irradi-
ation of 103Rh up to 28 Mev// Nuclear Instru-
ments and Methods in Physics Research. 2000,
v.B170, p.281-292.
4. S. Nag, D. Beyer, J. Friedland, et al. // J. Ra-
diat.Oncol. Biol. Phys. 1999, N44, 789p.
5. P.V. Harper, K. Lathrop, J.L, Need. // ORNL-
LR-DVG51564. 1961, 124p.
6. A. Hermanne, M.Sonck, S. Takacs, et al.
Deuteron Bombardment of 103Rh: A New
Promising Pathway For The Production Of
103Pd // Journal of Nuclear Science and Tehnol-
ogy. Supplement 2, August 2002, p.1286-1289
7. A.M. Yegorov, A.G. Lymar’, I.M. Neklyudov,
Yu.T. Petrusenko. A compact cyclotron CV-28
and the prospects of its use at NSC KIPT //
Voprosy Atomn. Nauki i Tekhn. Ser. ”Nuclear-
physics investigations”. 2008, No5(50), p.12.
8. B.S. Yuldashev, U. Khudaibergenov, I.R. Gu-
lamov, et al. Extraction of 103Pd without a
carrier from a thin rhodium wire irradiated
with a proton beam of the cyclotron U-150 //
Radiokhimiya. 2003, v.45, No2, p.152-153 (in
Russian).
9. W.Z. Gelbart, N.R. Stevenson, R.R. Johnson,
et al. High current radioisotope production with
solid target system // Particle Accelerator Con-
ference. Washington, May 17-20, 1993.
10. O.F. Nemets, Yu.V. Gofman. Nuclear physics
handbook. Kiev: ”Naukova dumka”, 1975 (in
Russian).
11. P.V. Harper, K. Lathrop, J.L. Need. ORNL-LR-
DWG 51564, 1961, p.124.
12. P.P. Dmitriev. Radionuclide yield in reactions
with protons, deutrons, alpha particles and
helium-3, INDC(CCP)-263/G+CN+SZ, Vienna,
1986.
13. A.I. Dityuk, A.Yu. Konobayev, V.H. Lunev, et
al. Alice-IPPE code, INDC(CCP)-410, IAEA, Vi-
enna, 1998.
ОЦЕНКА ВОЗМОЖНОСТИ НАРАБОТКИ РАДИОНУКЛИДА ПАЛЛАДИЙ-103 НА
ЦИКЛОТРОНЕ CV-28 ДЛЯ ЯДЕРНОЙ МЕДИЦИНЫ
Ю.Т. Петрусенко, А.Г. Лымарь, Л.И. Николайчук, Т.А. Понамаренко,
А.И. Тутубалин, А.Г. Шепелев
В работе рассматривается возможность получения радионуклида палладий-103 на циклотроне CV-28 в
реакциях на протонах и дейтронах для использования его в медицине, для брахитерапии в частности.
Приведены рассчитанные оценки активностей наработанного 103Pd на внутренней и наружной мише-
нях циклотрона CV-28. Определена энергия, передаваемая пучком протонов и дейтронов мишени при
облучении. Обсуждается возможность отвода тепла от подложки мишеней.
ОЦIНКА МОЖЛИВОСТI НАПРАЦЮВАННЯ РАДIОНУКЛIДА ПАЛАДIЙ-103 НА
ЦИКЛОТРОНI CV-28 ДЛЯ ЯДЕРНОЇ МЕДИЦИНИ
Ю.Т. Петрусенко, А.Г. Лимарь, Л.I. Нiколайчук, Т.О. Понамаренко, А.I. Тутубалiн,
А.Г. Шепелєв
У роботi розглядується можливiсть здобуття радiонуклiда паладiй-103 на циклотронi CV-28 в реак-
цiях на протонах i дейтронах для використання його в медицинi, для брахiтерапiї зокрема. Приведено
розрахованi оцiнки активностей напрацьованого 103Pd на внутрiшнiй i зовнiшнiй мiшенях циклотрона
CV-28. Визначена енергiя, яка передається пучком протонiв i дейтронiв мiшенi при опромiненнi. Об-
говорюється можливiсть вiдведення тепла вiд пiдкладки мiшеней.
63
|