Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator

Comparison is made between the calculated and experimental doses absorbed by complex density-inhomogeneous objects during their radiation processing. The process of fast electron passage through the object and depth dose formation has been simulated by the Monte Carlo technique with the use of the...

Full description

Saved in:
Bibliographic Details
Date:2009
Main Authors: Demeshko, O.A., Kochetov, S.S., Mahnenko, L.A., Melnitsky, I.V., Shopen, O.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/96512
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator / O.A. Demeshko, S.S. Kochetov, L.A. Mahnenko, I.V. Melnitsky, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 85-89. — Бібліогр.: 1 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-96512
record_format dspace
spelling irk-123456789-965122016-03-18T03:02:40Z Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator Demeshko, O.A. Kochetov, S.S. Mahnenko, L.A. Melnitsky, I.V. Shopen, O.A. Ядернo-физические методы и обработка данных Comparison is made between the calculated and experimental doses absorbed by complex density-inhomogeneous objects during their radiation processing. The process of fast electron passage through the object and depth dose formation has been simulated by the Monte Carlo technique with the use of the licensed program package PENELOPE. The calculated and experimental data are found to be in good agreement (≈30 %). Preliminary simulation of the process of object irradiation at given conditions provides the necessary information when developing the methods for a particular group of objects. This is of particular importance at performing bilateral irradiation, when an insignificant density variance of different objects may lead to appreciable errors of dose determination in the symmetry plane of the object В статтi наводяться результати обчисленого та експериментального визначення поглинутої дози при радiацiйнiй обробцi складних неоднорiдних за щiльнiстю об’єктiв. Моделювання процесу проходження швидких електронiв крiзь об’єкт та формування глибинної дози виконано за методом Монте-Карло з використанням пакету лiцензiйних програм PENELOPE. Обчисленi та експериментальнi данi добре спiвпадають мiж собою (≈ 30 %). Виконання попереднього моделювання процесу опромiнювання об’єктiв у заданих умовах дає необхiдну iнформацiю при розробцi методики для певної групи об’єктiв. Це особливо важливо при проведеннi двухстороннього опромiнювання, коли незначнi вiдхилення щiльностi рiзних об’єктiв можуть призводити до помiтних помилок визначення дози в площiнi їх симетрiї. В статье приводятся результаты расчетного и экспериментального определения поглощенной дозы при радиационной обработке сложных неоднородных по плотности объектов. Моделирование процесса прохождения быстрых электронов через объект и формирования глубинной дозы выполнено методом Монте-Карло с использованием пакета лицензионных программ PENELOPE. Расчетные данные находятся в хорошем согласии с экспериментальными (≈ 30 %). Выполнение предварительного моделирования процесса облучения объектов в заданных условиях дает необходимую информацию при разработке методики для конкретной группы объектов. Это особенно важно при проведении двухстороннего облучения, когда незначительные отклонения плотности разных объектов могут приводить к заметным ошибкам определения дозы в плоскости их симметрии. 2009 Article Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator / O.A. Demeshko, S.S. Kochetov, L.A. Mahnenko, I.V. Melnitsky, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 85-89. — Бібліогр.: 1 назв. — англ. 1562-6016 PACS: 87.80.+s, 87.90.+y http://dspace.nbuv.gov.ua/handle/123456789/96512 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Demeshko, O.A.
Kochetov, S.S.
Mahnenko, L.A.
Melnitsky, I.V.
Shopen, O.A.
Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator
Вопросы атомной науки и техники
description Comparison is made between the calculated and experimental doses absorbed by complex density-inhomogeneous objects during their radiation processing. The process of fast electron passage through the object and depth dose formation has been simulated by the Monte Carlo technique with the use of the licensed program package PENELOPE. The calculated and experimental data are found to be in good agreement (≈30 %). Preliminary simulation of the process of object irradiation at given conditions provides the necessary information when developing the methods for a particular group of objects. This is of particular importance at performing bilateral irradiation, when an insignificant density variance of different objects may lead to appreciable errors of dose determination in the symmetry plane of the object
format Article
author Demeshko, O.A.
Kochetov, S.S.
Mahnenko, L.A.
Melnitsky, I.V.
Shopen, O.A.
author_facet Demeshko, O.A.
Kochetov, S.S.
Mahnenko, L.A.
Melnitsky, I.V.
Shopen, O.A.
author_sort Demeshko, O.A.
title Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator
title_short Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator
title_full Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator
title_fullStr Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator
title_full_unstemmed Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator
title_sort radiation processing of inhomogeneous objects at the 300 mev electron linear accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2009
topic_facet Ядернo-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/96512
citation_txt Radiation processing of inhomogeneous objects at the 300 MeV electron linear accelerator / O.A. Demeshko, S.S. Kochetov, L.A. Mahnenko, I.V. Melnitsky, O.A. Shopen // Вопросы атомной науки и техники. — 2009. — № 5. — С. 85-89. — Бібліогр.: 1 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT demeshkooa radiationprocessingofinhomogeneousobjectsatthe300mevelectronlinearaccelerator
AT kochetovss radiationprocessingofinhomogeneousobjectsatthe300mevelectronlinearaccelerator
AT mahnenkola radiationprocessingofinhomogeneousobjectsatthe300mevelectronlinearaccelerator
AT melnitskyiv radiationprocessingofinhomogeneousobjectsatthe300mevelectronlinearaccelerator
AT shopenoa radiationprocessingofinhomogeneousobjectsatthe300mevelectronlinearaccelerator
first_indexed 2025-07-07T03:43:55Z
last_indexed 2025-07-07T03:43:55Z
_version_ 1836958180026875904
fulltext RADIATION PROCESSING OF INHOMOGENEOUS OBJECTS AT THE 300 MeV ELECTRON LINEAR ACCELERATOR O.A. Demeshko, S.S. Kochetov ∗, L.A. Mahnenko, I.V. Melnitsky, O.A. Shopen National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received July 26, 2007) Comparison is made between the calculated and experimental doses absorbed by complex density-inhomogeneous objects during their radiation processing. The process of fast electron passage through the object and depth dose formation has been simulated by the Monte Carlo technique with the use of the licensed program package PENELOPE. The calculated and experimental data are found to be in good agreement (≈30 %). Preliminary simulation of the process of object irradiation at given conditions provides the necessary information when developing the methods for a particular group of objects. This is of particular importance at performing bilateral irradiation, when an insignificant density variance of different objects may lead to appreciable errors of dose determination in the symmetry plane of the object. PACS: 87.80.+s, 87.90.+y 1. INTRODUCTION The expediency of using this or that irradiation technique is determined with consideration for opti- mum combination of productivity and quality of the given process, which is characterized by the ability to form the radiation field that provides the necessary uniformity of absorbed energy distribution through- out the irradiated object. The absorbed dose built up on the object surface (in the superfine layer of the material) is determined by the incident electron flux density. In our case, the sweeping magnets are absent, and the output beam has the Gaussian distribution of flux density in the cross section. Therefore, the highest flux density on the object is found on the optical axis of the beam, and its root mean square (r.m.s.) radius is dependent on the initial electron energy, on the material and thickness of the foil of the exit window of the chan- nel, and also on the distance to the object. These initial parameters are chosen in each particular case, depending on the vertical dimensions of the object and the permissible dose variations at the edges (e.g., no more than ≈ 30%). 2. SHORT DESCRIPTION OF THE FACILITY PARTS AND THEIR FUNCTIONS The sterilization facility consists of three main parts: − accelerated electron source with a horizontal beam layout; − extraction, beam-shaping and beam property diagnostic channel; − conveyor for object transfer to the irradiation area (see. Fig.1). 1 2 3 4 5 6 7 8 9 LINAC CONVEYOR THE CHANNEL OF AN EXTRACTION OF PARTICLES Fig.1. The lay-out diagram of inventory of the sterilization stand (plan view) The accelerated electron accelerator presents a pulsed two-section travelling-wave linear accelerator with adjustable parameters of the beam (mean electron energy 5...25 MeV , half-width ∼ 10%, average beam current 1...100µA). It is a complicated setup that in- corporates a unique pulse and high-frequency equip- ment of total power ∼ 90 kw. The extraction channel includes a dc magnet (1) that deflects the electron beam through 35◦ in the horizontal plane relative to the accelerator axis. In ∗Corresponding author. E-mail address: kochetoff@mail.ru PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N5. Series: Nuclear Physics Investigations (52), p.85-89. 85 the focus of the magnet there is a particle monochro- mator (4) intended to analyze beam energy charac- teristics. At the channel output, a Faraday cup (6) with a remotely introduced absorber is installed to measure the total beam current. The quadrupole-lens doublet (2) provides beam shaping of r.m.s. radius 0.5 cm at the channel output. A two-pole electromagnetic corrector of horizontal/vertical deflection (3) serves for beam displacement within small limits (approxi- mately 1.5 cm) relative to the optical axis of the ex- traction channel in the conveyor plane. The shape, lateral dimensions and position of the beam during pretuning of the accelerator in the specified operat- ing conditions are controlled with the help of the tele- vision facility (8) through the use of the fluorescent screen (7). The refinement of both the beam position and the vertical current density distribution directly on the object at the final adjustment of the operating conditions and further on in the process of the whole irradiation run of the accelerator is realized with the help of the ionization detector (9). In this case, the beam current is continuously controlled by means of an induction transit-time pickup (5), a charge inte- grator and a digital voltmeter pre-calibrated against the full-absorption Faraday cup (6). The conveyor presents a horizontal shelf, 25 cm in width and 8.25 m in length. It is assembled from thin plates and duralumin L-shaped elements and is check clamped to four separate carriages movable on rolls along a straight monorail. The asynchronous motor connected with the carriages via a double-reduction worm-gear unit, pinion and chain drives, a lead drum and a haulage line serves as a driving actuator. Irre- spective of charging by weight, the conveyor is mov- ing at a constant velocity of 5.1 cm/s. The conveyor performs the number of total cycles or half-cycles (odd number of passes) assigned by the operator through the use of the controlling system in the autoreverse mode at the beginning and the end of one-direction pass, which makes 9.1 m at most. De- pending on the conveyor occupancy with objects, the pass length can be regulated. After the assigned pro- gram is completed, the beam is switched off and the conveyor stops. The facility is provided with safety locks for the cases of unforeseen beam switching-off (the conveyor is then stopped) or conveyor stop (in this case the beam is switched off). In case of these unforeseen stoppages, the data are recorded on the number of passes made, the current condition of the conveyor and the direction of its motion at the moment of stop- page. This permits the conveyor restart after trou- bleshooting with keeping the control over the process of necessary dose buildup by the objects under irra- diation. 3. CHARACTERIZATION OF OBJECTS UNDER IRRADIATION The surgical suture materials (polished catgut, silk suture) are the principal items for treatment. The Customer supplies them for irradiation in the form of ampoules or packets. Separate items are placed in cardboard panels, i.e., boxes, which are then linked in paired units - irradiation objects. The object is char- acterized by a molecular composition of component mixture, overall dimensions, the average density and density distribution uniformity in the volume. The catgut blocks in ampoules, the lower part of which (without a cardboard box) has an average density of ∼ 1.07 g/cm3 (air, glass, solution, catgut) and the upper part has a density of ∼ 0.43 g/cm3 (air, glass), present more complex objects for irradiation. The irradiation technique under development must take into account these circumstances. 4. DETERMINATION OF AVERAGE DENSITY AND MASS BRAKING POWER OF THE OBJECT The mass braking power of the object, which in- volves energy losses dE as a result of collisions and radiation on the path dl (ionization and radiation losses) is the quantitative characteristic of the in- teraction between the accelerated electrons and the substance of density ρ that is responsible for the ab- sorbed dose. In the case, where the nuclear reactions can be neglected, the total mass braking power of the substance is represented by two components: εtot = 1 ρ · (dE dl )tot = 1 ρ · (dE dl )col + 1 ρ · (dE dl )rad . (1) There are corresponding detailed tables [1] for the data. However, as mentioned above, the task difficulty in our case lies in the fact that we are dealing with a complex multi- component composition of the object under irra- diation (air, glass, spirit aqueous solution, catgut). 2 1 r A BD O C E F G H h Fig.2. Element of volume 86 Therefore, when estimating the absorbed dose at the given point of the object we must use certain averaged values of energy losses and density. For averaging of εav we single out the element of volume in the form of a cube with a side 2r (r is the outer radius of the ampoule, see Fig.2). Then, it can be written down the following: Vi = Si · 2r-partial volume of the i-th component of the object (where Si- is the cross section); mi = Vi · ρi-partial mass of the i-th component; M = ∑ Vi · ρi-the total mass of volume element (over all 4 components); ρav = M (2r)3 = 1 2r ∑ ∆li · ρi-average volume of the object (were ∆li = S i 2r -is the reduced layer thickness of the i-th component in the volume element) ∆Ei = εi ·ρi ·∆li-electron energy losses in the i-th layer; The average mass braking power of the object takes on the form: εav = 1 ρav · 1 2r · ∑ εi · ρi ·∆li . (2) The procedure of determining Si and ∆li can be understood from the geometrical constructions pre- sented in Fig.2, which shows the cross section of the volume element (one of possible variants). The cal- culated εav values enable one to calculate the surface dose distribution on the objects by the following for- mula: D ≈ n · I0 · ε√ 2π · e · σ · νn · exp(− y2 2σ2 ) , (3) were I0-is the average beam current; e-is the electron charge; σ-is the r.m.s. beam radius; νn = ν · cos α-is the velocity of the cross motion of the object relative to the beam; n-is the number of conveyor passes; ν-is the linear velocity of conveyor motion; α-is the angle between the beam axis and the normal to the plane of object motion; y-is the vertical coordinate of the reference point of the object. 5. OBJECT SURFACE/DEPTH DISTRIBUTIONS OF THE DOSE Figure 3,a shows the vertical surface-dose dis- tribution at irradiation of density-uniform object, namely, packeted catgut, 10 cm in height. The r.m.s beam radius on the near plane of the object is ∼ 6 cm, the irradiation is bilateral. A more complicated task relates to the determi- nation of depth dose of the object, particularly if the medium is inhomogeneous. The depth dependence of the absorbed dose is determined by the elemental composition and the average density of the irradiated object, and also by the initial electron energy. Figure 4,a shows the calculated absorbed dose as a function of depth at energies of 2, 5, 10, 15 and 20 MeV in the elementary case for parallel and uniform-in-the-cross section electron flux inci- dent perpendicularly (α = 0) on the semi-infinite medium of density 1.07 g/cm3, which was chosen to be equal to the effective density of the lower part of the object (catgut in ampoules). a) sm 10 D o s e , M ra d 10 sm D o s e , M ra d b) a b c) sm a b δ 10 3.5 D o s e , M ra d Fig.3. Height dose distribution at bilateral irradiation of objects: a) density-uniform, b) nonuniform, c) nonuniform with beam displacement by the optimum value relative to the middle of the object The process of fast-electron passage through the ob- ject and the depth dose formation were simulated by 87 the Monte Carlo technique with the use of the li- censed program package PENELOPE. PENELOPE provides simulation of arbitrary electron-photon showers in complex material struc- tures (mixtures). In the process, consideration is given to the following types of interaction: elastic and inelastic scattering of electrons and positrons, bremsstrahlung by electrons and positrons, positron annihilation, coherent scattering, Compton scatter- ing of photons, electron-positron pair production. It can be seen from Fig.4,a that the dose increase in the depth medium due to the production of sec- ondary particles is dependent on energy, the dose be- coming lower with energy increase. a) 2 5 10 15 20 MeV T h e a b s o rb e d d o s e , M ra d Depth of medium, sm 1 2 3 4 Depth of object, sm T h e a b s o rb e d d o s e , M ra d b) Fig.4. Depth dose distribution To irradiate objects, we have chosen the (15...16)MeV energy range, where the dose differ- ence within the object is about ∼ 30%, and the extrapolated path of electrons in the medium (R) varies between 7.3 and 7.8 cm. To equalize the dose in the depth of the object and to improve the efficiency of the irradiation process, the known bilateral irradiation method is used. Figure 4b shows the plots of calculated depth dose formation in this case for electron energy of 16 MeV and the above-specified initial conditions (i.e., parallel uniform flux). Calculation was carried out for 6 passes of the standing on the conveyor ob- ject, at a current of a beam of electrons I = 73 µA. The optimum thickness of the object, at which dose balance is provided both on its surface and inside, is ∆ ≈ 13.5 cm. Curves 1 illustrate the data about ob- ject irradiation on each side, curve 2 shows the total characteristic. All other conditions being equal, the dose accu- mulated in the unit layer of the object is determined by the mass braking power of the object substance and by the density of electron flux passing through it. In our case, the braking powers of materials differ insignificantly. Thus, the decisive role in dose for- mation belongs to the electron flux passing through the unit layer of the object. At bilateral irradiation conditions, the denser part of the object is irradiated once, while the part of lesser density is irradiated twice in view of its transparence. Hence, at bilateral irradiation the accumulated dose in the part of lesser density of the object is higher than that observed in the denser part. It is obvious that in the plane of symmetry of the object (this may be the boundary line in the 2-box block) there may be both the lack of dose in relation to the dose accumulated in the thin surface layer Ds, and the excess dose if the real thickness and average density deviate from the optimum values at the set electron energy value. The same figure also shows the data on the dose field formation in the upper part of the object that has the effective density ∼ 0.43 g/cm3 (curves 3 show the bilateral irradiation data, curve 4 represents the total dose). It can be seen that owing to a relative transparence of the block in this section to acceler- ated electrons, the absorbed dose substantially ex- ceeds the dose value in the lower, practically non- transparent part that has a higher density (in the fig- ure, the dose curves show only an insignificant step (∼ 2 %) due to the occurrence of braking gamma- radiation. Taking into account the facts that the electron flux is divergent, and the current density distribution on the object is nonuniform in the cross section, then, by displacing the optical axis of the beam by a cer- tain δ value vertically downward with respect to the middle of the block, it appears possible to attain the dose equality at the points close to the upper (a) and lower (b) boundaries of the block. (see Figs.3,b,c). This procedure also leads to some increase in the ir- radiation efficiency and to the decrease in dose strag- gling directly in the thread field. In this case, the necessary displacement value is determined through 88 calculations and is adjusted experimentally for each type of objects (δ = 1.5...2.5 cm). Since the beam is incident on the object at an angle α = 55◦, the geometric thickness of the block must be smaller than the above-mentioned ∆ value by a factor of 1/ cosα ≈ 1.74. So, at an ampoule outer diameter of 1.1 cm, the actual optimum block thickness will be equivalent to approximately 8 lay- ers of closely packed ampoules, i.e., each box must contain 4 layers. From the above reasoning it is recommended that in the manufacture of the ampoule catgut special care should be taken to control that the spirit solution fully covers the catgut thread in the vertical position of the ampoule. Otherwise, during bilateral irradi- ation, the part of thread bundle projecting over the solution will receive an excessive dosage by virtue of a considerably lower effective density of the object in this section. 6. CONCLUSION The computations of the surface absorbed dose by formula (3) and depth dose distribution with the use of the simulation programs PENELOPE are in good agreement between themselves and with the measure- ment results, the divergence being no more than 30%. (The absorbed dose was measured by the known tech- nique through the use of Type SO PD(F)-5/150 film dosimeters and Type SF-46 spectrophotometer). The preliminary simulation of the process of ob- ject irradiation at given conditions provides the infor- mation required when developing the technique for a specific group of objects. This is of prime importance in the performance of bilateral irradiation, when an insignificant variation in the density of different sam- ples may lead to appreciable errors in dose determina- tion in the symmetry plane of the object (see Fig.4,b). References 1. Report of the 35-th International Commissions on Radiation Units and Measurements ”Radia- tion dosimetry: electron beams of energies rang- ing from 1 to 50 MeV (Russian translation). Moscow: ”Energoatomizdat”. 1988, p.16-22, 28- 34. ОСОБЕННОСТИ РАДИАЦИОННОЙ ОБРАБОТКИ НЕОДНОРОДНЫХ ОБЪЕКТОВ НА 300-МэВ - ЛИНЕЙНОМ УСКОРИТЕЛЕ ЭЛЕКТРОНОВ О.А. Демешко, С.С. Кочетов, Л.А. Махненко, И.В. Мельницкий, О.А. Шопен В статье приводятся результаты расчетного и экспериментального определения поглощенной дозы при радиационной обработке сложных неоднородных по плотности объектов. Моделирование процесса прохождения быстрых электронов через объект и формирования глубинной дозы выполнено мето- дом Монте-Карло с использованием пакета лицензионных программ PENELOPE. Расчетные данные находятся в хорошем согласии с экспериментальными (≈ 30%). Выполнение предварительного мо- делирования процесса облучения объектов в заданных условиях дает необходимую информацию при разработке методики для конкретной группы объектов. Это особенно важно при проведении двухсто- роннего облучения, когда незначительные отклонения плотности разных объектов могут приводить к заметным ошибкам определения дозы в плоскости их симметрии. ОСОБЛИВОСТI РАДIАЦIЙНОЇ ОБРОБКИ НЕОДНОРIДНИХ ОБ’ЄКТIВ НА 300-МеВ - ЛIНIЙНОМУ ПРИСКОРЮВАЧI ЕЛЕКТРОНIВ О.А. Демешко, С.С. Кочетов, Л.О. Махненко, I.В. Мельницький, О.О. Шопен В статтi наводяться результати обчисленого та експериментального визначення поглинутої дози при радiацiйнiй обробцi складних неоднорiдних за щiльнiстю об’єктiв. Моделювання процесу проходження швидких електронiв крiзь об’єкт та формування глибинної дози виконано за методом Монте-Карло з використанням пакету лiцензiйних програм PENELOPE. Обчисленi та експериментальнi данi добре спiвпадають мiж собою (≈ 30%). Виконання попереднього моделювання процесу опромiнювання об’єк- тiв у заданих умовах дає необхiдну iнформацiю при розробцi методики для певної групи об’єктiв. Це особливо важливо при проведеннi двухстороннього опромiнювання, коли незначнi вiдхилення щiльно- стi рiзних об’єктiв можуть призводити до помiтних помилок визначення дози в площiнi їх симетрiї. 89