Seismic Effects in F2 Region Related to Electron Temperature
Исследовано влияние землетрясений в ионосферном диапазоне F2 с использованием данных индийского спутника SROSS-C2 о космической электронной температуре вокруг Индийского сектора в диапазонах 0—34° N и 40—100° E за период 1995—1997 гг. Проанализировано пять эпизодов землетрясений и наблюдавшиеся аном...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут геофізики ім. С.I. Субботіна НАН України
2011
|
Schriftenreihe: | Геофизический журнал |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/96860 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Seismic Effects in F2 Region Related to Electron Temperature / A.K. Sharma, A.V. Patil, R.V. Bhonsle, R.S. Vhatkar, P. Subrahmanyam // Геофизический журнал. — 2011. — Т. 33, № 2. — С. 105-115. — Бібліогр.: 33 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-96860 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-968602016-03-22T03:02:27Z Seismic Effects in F2 Region Related to Electron Temperature Sharma, A.K. Patil, A.V. Bhonsle, R.V. Vhatkar, R.S. Subrahmanyam, P. Исследовано влияние землетрясений в ионосферном диапазоне F2 с использованием данных индийского спутника SROSS-C2 о космической электронной температуре вокруг Индийского сектора в диапазонах 0—34° N и 40—100° E за период 1995—1997 гг. Проанализировано пять эпизодов землетрясений и наблюдавшиеся аномалии при средней электронной температуре от 29 до 10 % большей, чем в предшествовавшие дни, и от 16 до 4 % большей, чем в дни после землетрясения, а также широтная вариация указанной температуры. Показано, что рост этой температуры был максимальным в день, предшествовавший землетрясению, и в течение нескольких часов до и после него. Аномалии, наблюдавшиеся вокруг (в ±2-градусном широтном диапазоне), были эпицентром землетрясения. Они наблюдались, вероятно, в силу электромагнитного излучения во время активности землетрясения. Период с 1995 по 1997 г. для данного исследования принимали как период спокойных геомагнитных условий. Досліджено вплив землетрусів в іоносферному діапазоні з використанням даних індійського супутника SROSS-C2 стосовно космічної електронної температури навколо Індійського сектору в діапазонах 0—34° N і 40—100° E за період 1995—1997 рр. Проаналізовано п’ять епізодів землетрусів і спостережувані аномалії за середньої електронної температури від 29 до 10 % більшої, ніж у попередні дні, та від 16 до 4 % більшої, ніж у дні після землетрусу, а також широтну варіацію зазначеної температури. Показано, що зростання цієї температури було максимальним у день, що передував землетрусу, і протягом кількох годин до і після нього. Аномалії, що спостерігались навколо (у ±2-градусному широтному діапазоні), були епіцентром землетрусу. Їх спостерігали, ймовірно, завдяки електромагнітному випромінюванню під час активності землетрусу. Період з 1995 по 1997 р. для цього дослідження вважали періодом спокійних геомагнітних умов. 2011 Article Seismic Effects in F2 Region Related to Electron Temperature / A.K. Sharma, A.V. Patil, R.V. Bhonsle, R.S. Vhatkar, P. Subrahmanyam // Геофизический журнал. — 2011. — Т. 33, № 2. — С. 105-115. — Бібліогр.: 33 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/96860 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Исследовано влияние землетрясений в ионосферном диапазоне F2 с использованием данных индийского спутника SROSS-C2 о космической электронной температуре вокруг Индийского сектора в диапазонах 0—34° N и 40—100° E за период 1995—1997 гг. Проанализировано пять эпизодов землетрясений и наблюдавшиеся аномалии при средней электронной температуре от 29 до 10 % большей, чем в предшествовавшие дни, и от 16 до 4 % большей, чем в дни после землетрясения, а также широтная вариация указанной температуры. Показано, что рост этой температуры был максимальным в день, предшествовавший землетрясению, и в течение нескольких часов до и после него. Аномалии, наблюдавшиеся вокруг (в ±2-градусном широтном диапазоне), были эпицентром землетрясения. Они наблюдались, вероятно, в силу электромагнитного излучения во время активности землетрясения. Период с 1995 по 1997 г. для данного исследования принимали как период спокойных геомагнитных условий. |
format |
Article |
author |
Sharma, A.K. Patil, A.V. Bhonsle, R.V. Vhatkar, R.S. Subrahmanyam, P. |
spellingShingle |
Sharma, A.K. Patil, A.V. Bhonsle, R.V. Vhatkar, R.S. Subrahmanyam, P. Seismic Effects in F2 Region Related to Electron Temperature Геофизический журнал |
author_facet |
Sharma, A.K. Patil, A.V. Bhonsle, R.V. Vhatkar, R.S. Subrahmanyam, P. |
author_sort |
Sharma, A.K. |
title |
Seismic Effects in F2 Region Related to Electron Temperature |
title_short |
Seismic Effects in F2 Region Related to Electron Temperature |
title_full |
Seismic Effects in F2 Region Related to Electron Temperature |
title_fullStr |
Seismic Effects in F2 Region Related to Electron Temperature |
title_full_unstemmed |
Seismic Effects in F2 Region Related to Electron Temperature |
title_sort |
seismic effects in f2 region related to electron temperature |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/96860 |
citation_txt |
Seismic Effects in F2 Region Related to Electron Temperature / A.K. Sharma, A.V. Patil, R.V. Bhonsle, R.S. Vhatkar, P. Subrahmanyam // Геофизический журнал. — 2011. — Т. 33, № 2. — С. 105-115. — Бібліогр.: 33 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT sharmaak seismiceffectsinf2regionrelatedtoelectrontemperature AT patilav seismiceffectsinf2regionrelatedtoelectrontemperature AT bhonslerv seismiceffectsinf2regionrelatedtoelectrontemperature AT vhatkarrs seismiceffectsinf2regionrelatedtoelectrontemperature AT subrahmanyamp seismiceffectsinf2regionrelatedtoelectrontemperature |
first_indexed |
2025-07-07T04:10:38Z |
last_indexed |
2025-07-07T04:10:38Z |
_version_ |
1836959860007108608 |
fulltext |
SEISMIC EFFECTS IN F2 REGION RELATED TO ELECTRON TEMPERATURE
Геофизический журнал № 2, Т. 33, 2011 105
Seismic Effects in F2 Region Related
to Electron Temperature
© A. K. Sharma1, A. V. Patil1, R. V. Bhonsle1, R. S. Vhatkar1, P. Subrahmanyam2, 2011
1Space and Earth Science, Department of Physics, Shivaji University Kolhapur, India.
2Radio & Atmospheric Science Division, National Physical Laboratory, New Delhi, India
Received 11 November 2009
Presented by Editorial Board Member V. G. Bakhmutov
Исследовано влияние землетрясений в ионосферном диапазоне F2 с использованием
данных индийского спутника SROSS-C2 о космической электронной температуре вокруг
Индийского сектора в диапазонах 0—34° N и 40—100° E за период 1995—1997 гг. Проанализи-
ровано пять эпизодов землетрясений и наблюдавшиеся аномалии при средней электронной
температуре от 29 до 10 % большей, чем в предшествовавшие дни, и от 16 до 4 % большей, чем
в дни после землетрясения, а также широтная вариация указанной температуры. Показано,
что рост этой температуры был максимальным в день, предшествовавший землетрясению, и
в течение нескольких часов до и после него. Аномалии, наблюдавшиеся вокруг (в ±2-градус-
ном широтном диапазоне), были эпицентром землетрясения. Они наблюдались, вероятно, в
силу электромагнитного излучения во время активности землетрясения. Период с 1995 по
1997 г. для данного исследования принимали как период спокойных геомагнитных условий.
Досліджено вплив землетрусів в іоносферному діапазоні з використанням даних індій-
ського супутника SROSS-C2 стосовно космічної електронної температури навколо Індій-
ського сектору в діапазонах 0—34 N і 40—100 E за період 1995—1997 рр. Проаналізовано
п’ять епізодів землетрусів і спостережувані аномалії за середньої електронної температури
від 29 до 10 % більшої, ніж у попередні дні, та від 16 до 4 % більшої, ніж у дні після землетру-
су, а також широтну варіацію зазначеної температури. Показано, що зростання цієї темпе-
ратури було максимальним у день, що передував землетрусу, і протягом кількох годин до і
після нього. Аномалії, що спостерігались навколо (у ±2-градусному широтному діапазоні),
були епіцентром землетрусу. х спостерігали, ймовірно, завдяки електромагнітному випро-
мінюванню під час активності землетрусу. Період з 1995 по 1997 р. для цього дослідження
вважали періодом спокійних геомагнітних умов.
1. Introduction. Electromagnetic emissions
associated with earthquakes and their effects on
ionosphere have already been discussed since
last three decades. Number of publications
brought out show that ionospheric variations do
exist which are associated with the seismo-elec-
tromagnetic activity and these appear several
hours before or around the earthquake day [Sili-
na et al., 2001; Molchanov et al., 2002; Pulinets et
al., 2003]. Hayakawa et al. [1994, 1996] reported
seismo-electromagnetic waves in the frequency
range from DC to HF have been considered as
an ionospheric disturbance frequency. Seismo-
electromagnetic emissions propagate towards
the ionosphere and perturb it.
There are two methods for observation of
earthquake signatures. The first one is the direct
observation of electromagnetic emissions from
the lithosphere and the second one is to detect
seismo-electromagnetic emissions using satellite
observations [Hayakawa et al., 2007]. In recent
decades, some authors using the satellite data
showed that the lithosphere-atmosphere-iono-
sphere interaction exit in the region of seismic
activity. Satellite observations have the major ad-
vantage of covering almost all the areas of seismic
activities throughout the world very quickly.
Satellite observations, related to electromag-
netic and ionospheric perturbations associated
with seismic activity, have been published by
many scientists [Parrot et al., 1993; Gokhberg
et al., 1995; Hayakawa, 1997; Liperovsky et al.,
2000; Sarkar et al., 2007]. Gokhberg et al. [1983]
reported the results of local plasma density and
temperature variations measured using onboard
AE-C and ISIS-2 satellites associated with seis-
mic activity. Boskova et al. [1993, 1994] have ob-
served using the data of Intercosmos-24 satellite
changes in ion composition before earthquakes
over the earthquake preparation zone. Also, sev-
A. K. SHARMA, A. V. PATIL, R. V. BHONSLE, R. S. VHATKAR, P. SUBRAHMANYAM
106 Геофизический журнал № 2, Т. 33, 2011
eral observational data suggest that an anoma-
lous state of the ionosphere exists in seismically
active regions both after [Blanc, 1985] and before
[Shalimov, 1992; Liperovsky et al., 1992] earth-
quakes.
Ionospheric disturbances with scales of few
hours in F, D and E regions of the ionosphere be-
fore the earthquakes have been reported in sev-
eral papers [Popov et al., 1996; Sharadze et al.,
1991; Liperovsky et al., 1999; 2000; Popov et al.,
2004]. Sorokin et al. [2001; 2006 a, b], Sorokin
and Chmyrev [2002] have formulated the elec-
trodynamic model of ionospheric precursors to
earthquakes. This model gives an explanation to
some electromagnetic and plasma phenomena
preceding earthquakes by amplification of DC
electric field in the ionosphere over a seismic
region. Such electric fields have been reported
from the satellite observations made over earth-
quake regions (M=4,8).
Study of anomalous behavior in ionospheric
parameter due to seismic activity such as en-
hancement in electron and ion temperatures and
ion density, gives good hints for the earthquake
predication. In the present paper, ionospheric
electron temperature data of SROSS C2 satellite
have been analyzed for the study of seismoelec-
tromagnetic effect on ionosphere perturbation.
The observation of electron temperature mea-
sured by SROSS C2 is also compared with the
values simulated from International Reference
Ionosphere 2001.
2. Database and observational methodo-
logy. In this study, earthquake information was
retrieved from USGS website for moderate earth-
quakes that occurred in latitude range of 0 to
34 N and longitude range of 40 to 100 E dur-
ing 1995 to 1997. The SROSS-C2 satellite was
launched by Indian Space Research Organiza-
tion (ISRO) on 4 May 1994 with the help ASLV-
D4 rocket. It had a perigee of 430 km, an apo-
gee of 930 km and orbit inclination of 46 . In
July 1994, the orbit of the satellite was trimmed
to 630 430 km. It was successfully operated con-
tinuously for seven years and it returned to earth
on July 12, 2001. It covered geographic latitude
belt of 31 S to 34 N and the longitude range
from 40 to 100 E. The electron and ion temper-
atures were measured separately by two retarded
potential analyzer (RPA) payloads aboard by the
Indian SROSS-C2 satellite. Detail of retarded po-
tential analyzer (RPA) payload has been given by
Garg and Das [1995]. The RPA sensors for elec-
tron and ion consist of four grids and a collector
electrode, which are mechanically identical but
provided with different grid voltages suitable for
collection of ions and electrons. The data from
the RPAs were transmitted to the ground station
through a serial digital format at 8 kbps. The data
were sampled at every 22 ms, which when trans-
lated into distance is ~176 m taking the satellite
velocity to be 8 km/s. The RPA experiment was
switched on only during the satellite visibility
over the ground station at Bangalore (12,6 N,
77,3 E geographic). On an average, two over-
head passes lasting ~10 min w tracked daily. Data
points of SROSS satellite were obtained at differ-
ent longitude, latitude, altitude and time.
3. Data selection and analysis. Study of iono-
spheric perturbation due to seismo-electromag-
netic emissions associated with seismic activity
using satellite data is a very difficult task because
the satellite passes very rarely over the earth-
quake epicenter. Data used in the study span
over 3 years, i.e. from January 1995 to Decem-
ber 1997. In the present work, satellite data for
electron temperature (Te) over a wide range from
latitude 0 to 30 N and longitude range from 40 to
100 E have been used for study. Five earthquake
events have been analyzed that occurred during
1995—1997. In these three years, the electron
temperature data were analyzed in the following
way-
First we compared the earthquake occur-
rence date, time, longitude, latitude with satellite
passing date over earthquake zone, longitude,
latitude of the satellite and approaching time of
the satellite in earthquake zone. In this way, we
neglected perturbation due to latitudinal, lon-
gitudinal and time effects. The average electron
temperature data were used for three days, which
included one each for pre, post and earthquake
day sequencially. Here, we could get only three
day’s electron temperature data in three year be-
cause of the fact that the satellite hardly passes
over the same longitude, latitude, altitude and
time. In these three years, we have observed only
five similar events occurring in above positions
and time. Maximum 3 zone around the epicen-
ter has been selected to minimize the latitudinal,
longitudinal and altitude effects. In this way, we
have neglected temperature variation due to
longitude, latitude and time. The average dis-
tance from the epicenter to satellite recording
was around 500 km. However, the data recorded
in each earthquake event laid approximately at
10 km altitude variation. The temperature varia-
tion due to altitude is negligible in the present
study. Also we have studied latitudinal variation
of the electron temperature per days. Here all
SEISMIC EFFECTS IN F2 REGION RELATED TO ELECTRON TEMPERATURE
Геофизический журнал № 2, Т. 33, 2011 107
the temperature data recorded by the SROSS-
C2 satellite are within the error limit of ±50 K
in the temperature range of 500—5000 K [Garg,
Das, 1995] The contribution of geomagnetic ef-
fect on electron temperature has been examined
by utilizing Kp index data obtained from the
World Data Center, Kyoto, Japan through inter-
net (http://swdcwww.kugi.kyoto-u.ac.jp/kp/in-
dex.html). All electron temperature data studied
were free from geomagnetic effect.
4. Result and discussion. Two earthquakes
of magnitude 4,9 and 4,5 occurred on March 19,
1995 at different times with an epicenter location
(8,08 N, 93,82 E) and (8,23 N, 94,01 E) respec-
tively. Fig. 1, a shows the day to day variation in
average electron temperature obtained from sat-
ellite data and Kp Index. In Fig. 1, a, variation in
electron temperature is shown 8 hours 16 minute
after the earthquake occurrence and the satel-
lite passed around 2 differences in longitude and
Fig. 1. Day to day variation in measured electron temperature and Kp index for 19 March 1995 earthquake (a), latitudinal varia-
tion of electron temperature with geog. latitude and days for 19 March 1995 earthquake (b), 3D plot of electron temperature
as a function of geog. latitude and days for 19 March 1995 earthquake (c).
A. K. SHARMA, A. V. PATIL, R. V. BHONSLE, R. S. VHATKAR, P. SUBRAHMANYAM
108 Геофизический журнал № 2, Т. 33, 2011
latitude with that of the earthquake. The corre-
sponding data of this event are shown in Fig. 1, a.
In Fig. 1, a, 2, a, 3, a, 4, a and 5, a, abscissa shows
days and left side ordinate shows electron tem-
perature and right side ordinate shows Kp index.
In this event, the average electron temperature
of satellite on earthquake day was 10 % greater
than its pre earthquake day and 5 % times greater
than its post earthquake day. Right side ordinate
shows geomagnetic indices in terms of Kp in-
dex. Kp is the sum of three hourly values of Kp.
The Kp is global geomagnetic index whose values
lies between 0 to 9. Kp was less than 30 implies
slight disturbance in the magnetic activity, KP
was greater than 40 implies strong disturbance
in magnetic activity [Hattori et al., 2002]. During
17—21 March, 1995 Kp were less than 20 which
indicate that 17—21 March was geomagnetically
quiet. Table 1 shows detailed information of the
earthquake events. Table 2 shows the time differ-
ence between passes of satellite and earthquake
occurrence and enhancement in electron tempera-
Fig. 2. Day to day variation in measured electron temperature and Kp index for 21 October, 1995 earthquake (a), latitudinal
variation of electron temperature with geog. latitude and days for 21 October, 1995 earthquake (b), 3D plot of showing electron
temperature as a function of geog. latitude and days for 21 October 1995 earthquake (c).
SEISMIC EFFECTS IN F2 REGION RELATED TO ELECTRON TEMPERATURE
Геофизический журнал № 2, Т. 33, 2011 109
ture over pre and post earthquake day. Table 3
represents average electron temperature during
earthquake event and normal day.
Fig. 1, b shows latitudinal variation of electron
temperature for 19 March, 1995 earthquake event.
It may be seen from the contour map that electron
Table 1. Location of satellite and earthquake with their information
Earthquake
date Magnitude Origin time of EQ
(UT)
Satellite reaching
time (UT) Earthquake location Satellite location
19/03/1995 4,9 04:20:56 12:36:03 8,08 N, 93,82 E 7,40 N, 91,30 E
19/03/1995 4,5 04:34:13 12:36:03 8,23 N, 94,01 E 7,40 N, 91,30 E
21/10/1995 4,9 19:39:39 10:27:1 31,43 N, 78,96 E 31,00 N,79,00 E
14/12/1995 4,6 04:09:32 10:50:11 18,13 N, 76,54 E 16,5 N, 77,4 E
24/09/1996 4,6 03:28:01 12:03:30 23,34 N, 88,59 E 24,8 N, 88,8 E
25/09/1996 5,0 17:41:17 11:48:15 27,43 N, 88,55 E 25,5 N, 87,5 E
21/05/1997 6,0 22:51:28 08:39:49 23,08 N, 80,04 E 20,02 N, 83,6 E
Table 2. Time difference between passes of satellite and earthquake occurrence andenhancement
in electron temperature pre and post days of earthquake
Earthquake
date
Time difference between satellite
passes over EQ region and earthquake
occurrence
Anomalies in SROSS C2 data over
EQ day, %
Before After Pre EQ day Post EQ day
19/03/1995 — 8 h 16 min 10 5
19/03/1995 — 8 h 16 min 10 5
21/10/1995 9 h 12 min — 29 4
14/12/1995 — 6 h 41 min 28 11
24/09/1996 — 9 h 15 min 29 5
25/09/1996 6 h 33 min — 29 5
21/05/1997 14 h 12 min — 23 16
Table 3. Average electron temperature during normal day and earthquake day
Earthquake
date
Average Electron Temperature, K
On normal day On earthquake day
19/03/1995 1400 1563
21/10/1995 1800 2450
14/12/1995 1280 1700
24/09/1996
1500 185025/09/1996
21/05/1997 1200 1550
temperature gradually increases on earthquake
day around the earthquake epicenter (8,23 N)
as compare to pre and post days of earthquake.
Electron temperature value on pre earthquake day
was ~1400 K and on earthquake day, it was ~1563 K.
Electron temperature was greater at lower and
higher latitude (~2000 K) as compared to earth-
quake epicentral latitude and it was about ~1563 K.
Fig. 1, c shows 3D map of electron temperature as
a function of geog. latitude and days. Fig. 1, b, c
show that on earthquake day electron tempera-
ture gradually increased around the latitude of
the earthquake epicenter from a low value ~500 K
to about ~1563 K. Fig. 1, c shows similar results
that are shown in Fig. 1, b, electron temperature
gradually increased at 8,30 N on earthquake day.
Fig. 1, c also shows that the electron tempera-
ture on the 19th March was greater than on the
A. K. SHARMA, A. V. PATIL, R. V. BHONSLE, R. S. VHATKAR, P. SUBRAHMANYAM
110 Геофизический журнал № 2, Т. 33, 2011
18th and 20th March around earthquake epicen-
ter. From Fig. 1, b, c, it is clear that the electron
temperature was low on earthquake day around
latitude of the earthquake epicenter with respect
to other latitudes; also electron temperature was
high on the earthquake day as compared to pre
and post earthquake days.
In the year 1995, two more earthquake
events were recorded; on October 21, 1995 and
on December 14, 1995 with magnitudes 4,9 and
4,6; and epicenters location (31,43 N, 78,96 E )
and (18,13 N, 76,54 E), respectively. The satel-
lite passed within 1 and 2 differences in longi-
tude and latitude of earthquake longitude and
latitude, in case of the 21st October and the 14th
December earthquakes, respectively. Also satel-
lite passed 9 hours 12 minute before and 6 hours
41 minute after occurrence of the earthquake,
respectively. Fig. 2, a shows day to day varia-
tion in average electron temperature of SROSS
C2 satellite data and it was 29 % greater than
its pre earthquake day and 4 % greater than its
post earthquake day for the October 21 earth-
quake event. Fig. 2, b, c show the contour map
and 3D map for variation in electron tempera-
ture as a function of Geog. Latitude and days,
respectively. Observed enhancement in elec-
tron temperature around earthquake epicenter
(31,43 N) on the earthquake day is shown in
Fig. 2, b, c. Electron temperature increases from
low value of ~1800 K in 28 N to 31 N latitude
ranges to about ~2450 K at earthquake epicen-
ter. Also both figures show that electron tem-
perature on the earthquake day (21st October)
was high (~2460 K) around earthquake epicen-
ter latitude as compared to pre and post days of
the earthquake day.
Fig. 3, a illustrates day to day variation in
the average electron temperature derived from
SROSS C2 satellite data and it was 28 % and 11 %
greater than its pre and post earthquake day
for the 14th December earthquake, respectively.
Kp was observed to be around 30 during 19—
23 October and 20 during 11—17 December as
seen from the Fig. 2, a, 3, a, respectively. These
figures show that the geomagnetic activity was
quiet during the observation period for the 21st
October and the 14th December, earthquakes.
Similar results were obtained for 14 Decem-
ber, 1995 earthquake event and these are shown
in Fig. 3, b, c. Fig. 3, b, c show enhancement in
electron temperature around the epicenter of
the earthquake. Both Figs. shows that, on earth-
quake day, electron temperature gradually in-
creases around latitude of earthquake epicen-
ter (18,13 N) from low value ~1280 K to about
~1700 K. Small enhancement in electron tem-
perature was observed on main shock day at
15,5 N latitude.
In the year 1996, two earthquake events were
recorded on the 24th and the 25th September of
magnitudes 4,6 and 5,0 with epicenter locations
(23,34 N, 88,59 E) and (27,43 N, 88,55 E), respec-
tively. The satellite passed within 2 differences in
longitude and latitude respectively of earthquake.
Also satellite passed around 9 hours 15 minute after
and around 6 hours 33 minute before the earth-
quake occurrence time, respectively. For the 24th
September earthquake electron temperature en-
hanced 29 % greater than its pre earthquake day.
For the 25th September earthquake this enhance-
ment was 5 % more than its pre earthquake day
and these are shown in Fig. 4, a. Kp was around
30 during 24—25 September and it shows that all
the days were geomagnetically quiet during the
observation period. Fig. 4, b, c show contour map
and 3D map respectively of variations in electron
temperature as a function of geographical latitude
and days. Both figures show enhancement in elec-
tron temperature at the earthquake epicenter for
both earthquakes. Electron temperature on the 24th
and the 25th September increased gradually from
low value ~1500 K to about ~1850 K during latitude
range 23 N to 27 N. Pre day of the 24th earthquake
event was low value of electron temperature was
observed as compared to both earthquake day, as
shown in both the figures.
Similar effect was noticed in case of earth-
quake recorded on 21 May, 1997. Magnitude of
this earthquake was 6 with an epicenter location
at (23,08 N, 80,04 E). The satellite passed with-
in 14 hours 12 minutes before and within 3 of
the earthquake. Electron temperature value en-
hanced 23 % more than its pre and 16 % greater
than its post day of the earthquake is shown in
Fig. 5, a. Kp was below 10 during 19—23 May
1996. This also confirmed that all the days were
geomagnetically quiet.
Similarly, Fig. 5, b, c show enhancement in
electron temperature around the earthquake
epicenter for earthquake days. Both Figs. show
maximum enhancement in electron temperature
was observed on earthquake day during 21 N
to 22,5 N with maximum value about ~1550 K
Electron temperature value ~1200 K for pre and
post earthquake day was low as compared to
earthquake day values ~1550 K.
The above discussion and analysis of elec-
tron temperature data shows the consistency be-
tween enhancement in electron temperature and
SEISMIC EFFECTS IN F2 REGION RELATED TO ELECTRON TEMPERATURE
Геофизический журнал № 2, Т. 33, 2011 111
Fig. 3. Day to day variation in measured electron temperature and Kp index for 14 December 1995 earthquake (a), latitudinal
variation of electron temperature as with geog. latitude and days for 14 December, 1995 earthquake (b), 3D plot of showing
electron temperature as a function of geog. latitude and days for 14 December 1995 earthquake (c).
seismo-electromagnetic emissions. Moreover
the enhancement in electron temperature is de-
pendant upon the magnitude of the earthquake.
These results are good enough to predict the
earthquake. The enhancement in average elec-
tron temperature varies from 29 to 10 % and 16
to 4 % as compared to pre and post earthquake
day, respectively. It shows enhancement in elec-
tron temperature was observed maximum on pre
earthquake day. Also it shows that enhancement
in electron temperature observed, was maximum
around earthquake epicentral latitude than at
other latitudes.
5. Lithosphere-ionosphere coupling mecha-
nism. The Earth’s ionosphere is subjected to
various man-made and natural influences. The
well-known hypothesis of the mechanism of cou-
pling between the lithospheric activity and iono-
sphere related to the seismic activity is through
the channels such as — chemical, acoustic and
electromagnetic. The influences of the seismic
activity on the ionosphere occur over the periods
A. K. SHARMA, A. V. PATIL, R. V. BHONSLE, R. S. VHATKAR, P. SUBRAHMANYAM
112 Геофизический журнал № 2, Т. 33, 2011
Fig. 5. Day to day variation in measured electron tempera-
ture and Kp index for 21 May, 1997 earthquake (a), latitu-
dinal variation of electron temperature with geog. latitude
and days for 21 May, 1997 earthquake (b), 3D plot of showing
electron temperature as a function of geog. latitude and days
for 21 May, 1997 earthquake (c).
Fig. 4. Day to day variation in measured electron tempera-
ture and Kp index for 24 and 25 September, 1996 earthquake
(a), latitudinal variation of electron temperature with geog.
latitude and days for 24 and 25 September, 1996 earthquake
(b), 3D plot of showing electron temperature as a function of
geog. latitude and days for 24 and 25 September, 1996 earth-
quake (c).
SEISMIC EFFECTS IN F2 REGION RELATED TO ELECTRON TEMPERATURE
Геофизический журнал № 2, Т. 33, 2011 113
from several hours to several days either during
the preparatory phase or during the post-seismic
relaxation phase.
In case of chemical channel, the geochemi-
cal quantities such as surface temperature, radon
emanation induce the perturbation in the con-
ductivity of the atmosphere, leading to the iono-
spheric modification through the atmospheric
electric field [Pulinets and Boyarchuk, 2004; So-
rokin et al., 2006 a, b, Hayakawa, 2007].
The acoustic channel is based on the atmo-
spheric oscillations in the lithosphere-atmo-
sphere-ionosphere coupling and the perturba-
tions in the Earth’s surface such as temperature,
pressure in a seismo-active region excite the at-
mospheric oscillations traveling up to the iono-
sphere [Miyaki et al., 2002; Shvets et al., 2004;
Hayakawa, 2007].
The electromagnetic channel is the one
through which radio emissions (DC to VHF) gen-
erated in the lithosphere propagate up to the
ionosphere, and modify the ionosphere thereby
leading to heating or ionization [Molchanov et
al., 1995; Hayakawa, 2007]. The intensification
of precipitating high-energy electrons with si-
multaneous excitation of electromagnetic waves
above the earthquake epicenter was previously
registered in the top side ionosphere as well.
Electromagnetic waves were generated du-
ring earthquake preparation phase due to diffe-
rent mechanisms. These SEM waves propagate
towards ionosphere and reach the ionosphere.
When the SEM waves collide with neutrals, posi-
tive ions and electrons having energies of few
tens of electron volts are produced. The free
electrons can travel long distances along mag-
netic field lines within the ionosphere. Again
more and more ion-electron pairs are produced
when the electrons collide with neutrals. This
process continues until the electrons thermalise
and attain energy of a few electron volts. In other
word, it seems that changes in the magnetic flux
tube topology can lead to increased precipitation
of energetic electrons. There occur collective os-
cillations in electrons and then collision among
electron, ion and neutrals. And during the colli-
sion whole volume oscillates. Then the change in
density and temperature of ionospheric param-
eters such as ion and electron causes the change
in collision frequency and modified ionospheric
conductivity [Grimalsky et al., 2003]. By this pro-
cess ionosphere temperature increases.
6. Conclusions. SROSS C2 satellite data have
been analyzed for finding out the relation be-
tween seismic activity and the ionosphere per-
turbation under quiet geomagnetic activity. En-
hancement in average electron temperature on
earthquake day has been observed to be 29 % to
10 % greater than its pre and 16 % to 4 % more
than its post earthquake day. It shows enhance-
ment in electron temperature was observed
maximum on pre earthquake day. Also enhance-
ment in average electron temperature has been
observed to be maximum 14 hours before and 9
hours after of the main shock. Also enhancement
in electron temperature was observed high with-
in 1 to 2 around earthquake epicentral latitude
than the other latitude. From this study; one can
conclude that ionospheric perturbations were
observed on earthquake days as compared to pre
and post days. And F2 region of ionosphere gets
perturbed because of seismic activity and it is
relate to the Seismo-electromagnetic emissions
associated with earthquake during earthquake
time, before and after the earthquake time.
Acknowledgement. The authors are thankful
to Department of Science and Technology (DST),
Government of India, New Delhi, for financial as-
sistance through project. Amol Patil is grateful to
CSIR, New Delhi, for providing him the Senior
Research fellowship during the course of the
work.
References
Blanc E. Observations in the upper atmosphere of in-
frasonic waves from natural or Artificial sources: a
summary // Annales Geophysicae. — 1985. — 3. —
Р. 673—688.
Boskova J., Smilauer J., Jiricek F., Triska P. Is the ion
composition of outer Ionosphere related to seismic
activity? // J. Atmospheric and Terrestrial Physics.
— 1993. — 55, № 13. — Р. 1689—1695.
Boskova J., Smilauer J., Triska P., Kudela K. Anomalous
behavior of plasma Parameters as observed by the
Intercosmos 24 satellite prior to the Iranian Earth-
quake of 20 June 1990 // Studia Geophysica et
Geodaetica. — 1994. — 38. — Р. 213.
Garg S. C., Das U. N. Aeronomy experiment on SROSSC2
// J. Spacecraft Technology. — 1995. — 5. — Р. 11—
15.
Gokhberg M. B., Morgounov V. A., Pokhotelov O. A.
Earthquake Prediction: Seismo-Electromagnetic
Phenomena. — Gordon and Breach Science Publi-
shers, 1995.
A. K. SHARMA, A. V. PATIL, R. V. BHONSLE, R. S. VHATKAR, P. SUBRAHMANYAM
114 Геофизический журнал № 2, Т. 33, 2011
Gokhberg M. B., Pilipenko V. A., Pokhotelov O. A. On
seismic precursors in the Ionosphere // Izv. USSR
Academy of Sciences. Physics of the Earth Series,
1983. — 10. — Р. 17—13.
Grimalsky V. V., Hayakawa M., Ivchenko V. N., Rapo-
port Yu. G., Zadorozhniic V. I. Penetration of an
electrostatic field from the lithosphere into the
ionosphere and its effect on the D-region before
earthquakes // J. Atmospheric and Solar-Terrestrial
Physics. — 2003. — 65. — Р. 391—407.
Hattori K., Akinaga Y., Hayakawa M., Yumoto K., Na-
gao T., Uyeda S. ULF magnetic anomaly preceding
the 1997 Kagoshima earthquakes // Terra Scientific
Publishing Company Tokyo, 2002. — Р. 19—28.
Hayakawa M. Electromagnetic Precursors of Earth-
quakes: Review of Recent Activities // Rev. Radio
Science, 1993—1996. — Oxford: Oxford University
Press, 1997. — Р. 807—818.
Hayakawa M. VLF/LF Radio Sounding of Ionospheric
Perturbations Associated with Earthquakes // Sen-
sors. — 2007. — 7. — Р. 1141—1158.
Hayakawa M., Fusinawa Y. Electromagnetic phenom-
enon related to earthquake predication // Terra
Scientific Publishing Company Tokyo. — 1994. —
P. 77.
Hayakawa M., Hattori K., Ohta K. Monitoring of ULF
(ultra-low-frequency) geomagnetic variations as-
sociated with earthquakes // Sensors. — 2007. — 7.
— Р. 1108—1122.
Hayakawa M., Kawate R., Molchanov O. A., Kiyohu-
mi Y. Results of Ultra-Low-Frequency magnetic
field measurements during the Guam earthquake
of 8 August 1993 // Geophys. Res. Lett. — 1996. —
23. — Р. 241—244.
Liperovsky V. A., Pokhotelov O. A., Liperovskaya E. V.,
Parrot M., Meister C. V., Alimov A. Modification of
sporadic E-layers caused by seismic activity // Sur-
veys in Geophysics. — 2000. — 21. — Р. 449—486.
Liperovsky V. A., Popov K. V., Pokhotelov O. A., Meis-
ter C.-V., Liperovskaya E. V., Alimov O. A. Iono-
spheric fbEs frequency variations with time in a
Seismically active region // Izv. Phys. Sol. Earth. —
1999. — 35, № 12. — Р. 1043—1048.
Liperovsky V. V., Pokhotelov O. A., Shalimov S. L. Iono-
spheric precursors to Earthquake. — Moscow:
Nauka, 1992. — Р. 304.
Miyaki K., Hayakawa M., Molchanov O. A. The role
of gravity waves in the ithosphere-ionosphere
coupling, as revealed from the subionospheric
LF propagation data // Seismo-Electromagnetics
(Lithosphere — Atmosphere — Ionosphere Cou-
pling). — Tokyo: TERRAPUB, 2002. — Р. 229—232.
Molchanov O. A, Hayakawa M., Afonin V. V., Aken-
tieva O. A., Mareev E. A. Possible influence of seis-
micity by gravity waves on ionospheric equatorial
anomaly from data of IK- 24 satellite1. Search for
idea of seismo-ionosphere coupling // Seismo-
Electromagnetics (Lithosphere—Atmosphere—
Ionosphere Coupling). — Tokyo: TERRAPUB,
2002. — Р. 275—285.
Molchanov O. A., Hayakawa M., Rafalsky V. A. Pe-
netration characteristics of Electromagnetic emis-
sions from an underground seismic source into the
atmosphere, ionosphere, and magnetosphere // J.
Geophys. Res. — 1995. — 100. — Р. 1691—1712.
Parrot M., Achache J., Berthelier J. J., Blanc E., Des-
champs A., Lefeuvre F., Menvielle M., Plantet J. L.,
Tarits P., Villain J. P. High-frequency seismo-Elec-
tromagnetic effects // Phys. Earth Planet. Int. —
1993. — 77. — Р. 65—83.
Popov K. V., Liperovsky V. A., Alimov O. A. Modifica-
tion of the ionospheric F2 layer density variation
spectra at night time during earthquake prepara-
tion // Izv. Phys. Sol. Earth. — 1996. — 32, № 1. —
Р. 85—88.
Popov K. V., Liperovsky V. A., Meister C. V., Biagi P. F.,
Liperovskaya E. V., Silina A. S. On ionospheric pre-
cursors of earthquakes in scales of 2–3 h // Phys.
Chem. Earth. — 2004. — 29. — Р. 529—535.
Pulinets S. A., Legenka A. D., Gaivoronskaya T. V.,
Depuev V. Kh. Main Phenomenological features of
ionospheric precursors of strong earthquakes // J.
Atmospheric and Solar Terrestrial Physics. — 2003.
— 65. — Р. 1337—1347.
Pulinets S., Boyarchuk K. Ionospheric Precursors of
Earthquakes. — Berlin: Springer, 2004. — 315 р.
Sarkar S., Gwal A. K., Parrot M. Ionospheric variations
observed by the DEMETER satellite in the mid-
latitude region during strong earthquakes // J. At-
mospheric and Solar Terrestrial Physics. — 2007.
— 69. — Р. 1524—1540.
Shalimov S. L. Lithosphere–ionosphere relationship: a
new way to predict Earthquakes? // Episodes, In-
ternational Geophysical Newsmagazine. — 1992.
— 15. — Р. 252—254.
Sharadze Z. S., Dzhaparidze G. A., Zhvaniya Z. K., Kva-
vadze N. D., Kikvilashvili G. B., Ziadze Z. L., Ma-
tiashvili T. G., Mosashvili N. V., Nikolayshvili N. Sh.
Disturbance in the ionosphere and geomagnetic
field associated with the Spitak earthquake // Izv.
Phys. Sol. Earth. — 1991. — 27, № 11. — Р. 106—
116.
Shvets A. V., Hayakawa M., Molchanov O. A., Ando Y.
A study of ionospheric response to regional seis-
mic activity by VLF radio sounding // Phys. Chem.
Earth. — 2004. — 29. — Р. 627—637.
SEISMIC EFFECTS IN F2 REGION RELATED TO ELECTRON TEMPERATURE
Геофизический журнал № 2, Т. 33, 2011 115
Silina S. A., Liperovskaya E. V., Liperovsky V. A., Meis-
ter C. V. Ionospheric phenomenon before strong
earthquakes // Natural Hazards and earth system
sciences. — 2001. — 1. — Р. 113—118.
Sorokin V. M., Chmyrev V. M. Electrodynamic model of
ionospheric precursors to earthquakes and certain
types of disasters // Geomagnetism and Aeronomy.
— 2002. — 42. — Р. 784—792.
Sorokin V. M., Chmyrev V. M., Yaschenko A. K. Electro-
dynamic model of the lower atmosphere and the
ionosphere coupling // J. Atmospheric and Solar
Terrestrial Physics. — 2001. — 63. — Р. 1681—1691.
Sorokin V. M., Chmyrev V. M., Yaschenko A. K. Possible
DC electric field in the ionosphere related to seis-
micity // Advances in Space Research. — 2006a. —
37. — Р. 666—670.
Sorokin V. M., Yaschenko A. K., Chmyrev V. M., Hayaka-
wa M. DC electric field formation in the mid-latitude
ionosphere over typhoon and earthquake regions //
Phys. Chem. Earth. — 2006b. — 31. — Р. 454—461.
|