Secular variations of the geomagnetic field and solar activity
Сделана попытка разделения вековых колебаний, создаваемых внешними источниками, по данным обсерваторий «Нурмиярви», «Лервик», «Ленинград», «Нимек», «Бельск», «Хартланд», «Киев», «Львов», «Шамбон-ля-Форет», «Одесса», «Сурларли», «Коимбра». Показано, что существует три типа вековых колебаний, связанны...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут геофізики ім. С.I. Субботіна НАН України
2011
|
Назва видання: | Геофизический журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/97101 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Secular variations of the geomagnetic field and solar activity / Yu. Sumaruk, J. Reda // Геофизический журнал. — 2011. — Т. 33, № 4. — С. 134-141. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-97101 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-971012016-03-26T03:02:30Z Secular variations of the geomagnetic field and solar activity Sumaruk, Yu. Reda, J. Научные сообщения Сделана попытка разделения вековых колебаний, создаваемых внешними источниками, по данным обсерваторий «Нурмиярви», «Лервик», «Ленинград», «Нимек», «Бельск», «Хартланд», «Киев», «Львов», «Шамбон-ля-Форет», «Одесса», «Сурларли», «Коимбра». Показано, что существует три типа вековых колебаний, связанных с внешними источниками. Короткопериодные колебания (около 2 лет) и колебания средней периодичности (около 11 лет) хорошо известны. Предположено наличие долговременной модуляции вековых колебаний с периодом 80 лет, которая происходит в связи с изменениями солнечной активности. Зроблено спробу розділення вікових коливань, утворюваних зовнішніми джерелами, за даними обсерваторій «Нурміярві», «Лервік», «Ленінград», «Німек», «Бєльськ», «Хартланд», «Київ», «Львів», «Шамбон-ля-Форет», «Одеса», «Сурларлі», «Коімбра». Показно, що існує три типи вікових коливань, пов’язаних із зовнішніми джерелами. Короткоперіодні коливання (близько 2 років) і коливання середньої періодичності (близько 11 років) добре відомі. Припущено наявність довгочасної модуляції вікових коливань з періодом 80 років, яка відбувається через змінення сонячної активності. 2011 Article Secular variations of the geomagnetic field and solar activity / Yu. Sumaruk, J. Reda // Геофизический журнал. — 2011. — Т. 33, № 4. — С. 134-141. — Бібліогр.: 8 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/97101 550.383 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научные сообщения Научные сообщения |
spellingShingle |
Научные сообщения Научные сообщения Sumaruk, Yu. Reda, J. Secular variations of the geomagnetic field and solar activity Геофизический журнал |
description |
Сделана попытка разделения вековых колебаний, создаваемых внешними источниками, по данным обсерваторий «Нурмиярви», «Лервик», «Ленинград», «Нимек», «Бельск», «Хартланд», «Киев», «Львов», «Шамбон-ля-Форет», «Одесса», «Сурларли», «Коимбра». Показано, что существует три типа вековых колебаний, связанных с внешними источниками. Короткопериодные колебания (около 2 лет) и колебания средней периодичности (около 11 лет) хорошо известны. Предположено наличие долговременной модуляции вековых колебаний с периодом 80 лет, которая происходит в связи с изменениями солнечной активности. |
format |
Article |
author |
Sumaruk, Yu. Reda, J. |
author_facet |
Sumaruk, Yu. Reda, J. |
author_sort |
Sumaruk, Yu. |
title |
Secular variations of the geomagnetic field and solar activity |
title_short |
Secular variations of the geomagnetic field and solar activity |
title_full |
Secular variations of the geomagnetic field and solar activity |
title_fullStr |
Secular variations of the geomagnetic field and solar activity |
title_full_unstemmed |
Secular variations of the geomagnetic field and solar activity |
title_sort |
secular variations of the geomagnetic field and solar activity |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2011 |
topic_facet |
Научные сообщения |
url |
http://dspace.nbuv.gov.ua/handle/123456789/97101 |
citation_txt |
Secular variations of the geomagnetic field and solar activity / Yu. Sumaruk, J. Reda // Геофизический журнал. — 2011. — Т. 33, № 4. — С. 134-141. — Бібліогр.: 8 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT sumarukyu secularvariationsofthegeomagneticfieldandsolaractivity AT redaj secularvariationsofthegeomagneticfieldandsolaractivity |
first_indexed |
2025-07-07T04:28:11Z |
last_indexed |
2025-07-07T04:28:11Z |
_version_ |
1836960964560289792 |
fulltext |
Y. SUMARUK, J. REDA
134 Геофизический журнал № 4, Т. 33, 2011
НАУЧНЫЕ СООБЩЕНИЯ
Introduction. The main field of the Earth has
its origin in the core due to the currents running at
a depth of about 2,900 km. The current system in
the core is not stable and homogeneous. The main
magnetic field at any point of the Earth’s surface
changes over time. It has been recognized since
the seventeenth century by Gellibrand. Now these
changes are known as the secular variations (SV).
Vector measurements of the field provide informa-
tion about the direction of the field as well as its
strength. Long time series of the mag-
netic field elements at global network
of magnetic observatories show also
the space changes of the field. Usually
the SV are computed from the differ-
ence between two successive annual
means and then are smoothed to at-
tenuate the variations from external
sources [Alexandrescu, 1996]. Beyond
all doubts geomagnetic secular varia-
tions consist of internal and external
sources. Separation of these variations
is a very difficult task so far as they
vary with time and space and are het-
erogeneous [Mandea, 2001]. To inves-
tigate SV different methods are used:
comparison of annual coefficients of
the spherical-harmonic analysis of the
geomagnetic field, comparison of the
УДК 550.383
Secular variations of the geomagnetic field and solar activity
© Y. Sumaruk1, J. Reda2, 2011
1Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine
2Institute of Geophysics of Polish Academy of Sciences, Warsaw, Poland
Received 7 February 2011
Presented by Editorial Board Member V. I. Starostenko
Сделана попытка разделения вековых колебаний, создаваемых внешними источниками,
по данным обсерваторий «Нурмиярви», «Лервик», «Ленинград», «Нимек», «Бельск», «Харт-
ланд», «Киев», «Львов», «Шамбон-ля-Форет», «Одесса», «Сурларли», «Коимбра». Показано,
что существует три типа вековых колебаний, связанных с внешними источниками. Корот-
копериодные колебания (около 2 лет) и колебания средней периодичности (около 11 лет) хо-
рошо известны. Предположено наличие долговременной модуляции вековых колебаний с
периодом 80 лет, которая происходит в связи с изменениями солнечной активности.
Зроблено спробу розділення вікових коливань, утворюваних зовнішніми джерелами, за
даними обсерваторій «Нурміярві», «Лервік», «Ленінград», «Німек», «Бєльськ», «Хартланд»,
«Київ», «Львів», «Шамбон-ля-Форет», «Одеса», «Сурларлі», «Коімбра». Показно, що існує три
типи вікових коливань, пов’язаних із зовнішніми джерелами. Короткоперіодні коливання
(близько 2 років) і коливання середньої періодичності (близько 11 років) добре відомі. Припу-
щено наявність довгочасної модуляції вікових коливань з періодом 80 років, яка відбувається
через змінення сонячної активності.
regular measurements of the field of magnetic ob-
servatories and repeat stations.
Experimental procedure. We have calculated
SV(H) and SV(Z) as a difference between mean
yearly values of horizontal (H) and vertical (Z)
components on all (A), quiet (Q) and disturbed
(D) days for magnetic observatories Belsk (BEL),
Lviv (LVV), Leningrad (LNN) and only on all days
for observatories Lerwick (LER), Hartland (HAD),
Niemegk (NGK), Surlari (SUA), Odessa (ODE),
Table 1
Observatory , grad , grad SV(H)0
Nurmijarvi 60,52 24,65 –3,59
Lerwick 60,13 358,82 7,79
Leningrad 59,95 30,70 –4,00
Moscow 55,48 37,32 –2,21
Niemegk 52,07 12,68 5,07
Belsk 51,83 20,80 1,29
Hartland 50,98 355,52 17,43
Kiev 50,72 30,30 –2,24
Lviv 49,90 23,75 0
Chambon la Foret 48,02 02,27 14,72
Odessa 46,78 30,88 –2,22
Surlari 44,68 26,25 –2,00
Coimbra 40,22 351,58 29,51
SECULAR VARIATIONS OF THE GEOMAGNETIC FIELD AND SOLAR ACTIVITY
Геофизический журнал № 4, Т. 33, 2011 135
Coimbra (COI), Nurmijarvi (NUR), Kiev (KIV),
Moscow (MOS) and Chambon la Foret (CLF).
Geographic coordinates of the observatories are
shown in table 1. The yearly mean values we ob-
tained from WDC in Moscow [Golovkov et. al.,
1983] and Kyoto [http://wdc.kugi.kyoto-u.ac.jp].
It is known that during magnetic storms mag-
netospheric ring current develops. Due to the
current, H-component decreases at low latitudes
(Dst-variation). The decrease of H is maximal at
equator and equal to zero at the earth’s poles.
Thus, during high solar activity, the number of
geomagnetic storms increases and mean yearly
values of H-component are low. Dst-variation is
observed in Z-component also [Sumaruk et al.,
1980]. Due to the ring current, Z component varia-
tions increase. Effect intensifies to high latitudes.
Different ionospheric current systems such as au-
roral electrojet, probably, also put in to the change
of SV.
Results and interpretation. Fig. 1 shows SV of
H (a) and Z (b) — components at magnetic obser-
vatory Lviv (LVV) from 1958 till 2000 for all (black),
quiet (green) and disturbed (red) days. Fig. 2 and
Fig. 3 show the same at magnetic observatories
Belsk (BEL) and Leningrad (LNN) corresponding-
ly. We see short (about two year) period variations
and long period ones exist. Amplitudes of short
period variations increase from LNN to LVV and
are the greatest for disturbed days. Long period
SV(H) appear to be in accord with quasi-sinusoi-
dal law similarly to aa index changes reported by
[Strestik, 1991] and Kp-index [Sumaruk Yu.,2001;
Sumaruk P., 2001].
Fig. 1. SV(H) — (a) and SV(Z) — (b) — at magnetic observatory Lviv.
Fig. 2. SV(H) — (a) and SV(Z) — (b) — components at magnetic observatory Belsk.
Fig. 3. SV(H) — (a) and SV(Z) — (b) — components at magnetic observatory Leningrad.
Y. SUMARUK, J. REDA
136 Геофизический журнал № 4, Т. 33, 2011
Fig. 4. SV(H) and SV(Z) variations for magnetic observatories LNN (a) and COI (b) from 1870 till 2000.
Short and long periods SV(Z) variations coin-
cide wonderfully in phase at the observatories. Un-
fortunately we can not observe increase of SV(Z)
amplitude from LVV to LNN, probably, because
the latitudes of the observatories change only by
about 10 degrees. Amplitudes of SV(Z) are also
greater for D-days than for Q-days. Phenomenon
is better observed for LVV and, maybe, it is con-
nected with influence of induced current in un-
derlying surface. Comparison shows that SV(H)
and SV(Z) change is opposite in phase. It proves
that short period variations have external sources.
Fig. 4 shows SV(H) (circle) and SV(Z) (square)
variations for magnetic observatories LNN (a)
and COI (b) from 1870 till 2000. We observe the
coincidence in time of short period variations as
SV(H) and so SV(Z), but the variations at COI have
greater amplitude. As to SV(H), it is understood
so far as COI placed nearer to equator than LNN,
but the increase of the amplitude of short period
variations SV(Z) at COI may the most probably
be explained by influence of induced currents.
It is necessary to note that during the war years
the observatories data at LNN and COI were un-
stable. The most prominent fact is the coincidence
in phase of the long period (about 80 years) varia-
tions at both observatories, but SV(H) is shifted
up and SV(Z) down on ordinate axis at COI rela-
tively to LNN. It was shown earlier [Sumaruk Yu.,
2001] that the changes of SV(H) at all middle and
subauroral magnetic observatories of the north
hemisphere of the Earth coincide in phase, but
their amplitudes and positions relatively the ordi-
nate axis are different. Dependence of SV(H)i at
i-observatory on SV(H)i+1 observatory is
SV(H)i=K×SV(H)i+1+SV(H)0,
where K — is constant value for certain observa-
tory and SV(H)0 is positive or negative number,
also constant for this observatory, but it is chosen
in such a way so that years of changes of SV(H)
sign for all observatories coincide. For the most
middle latitude European observatories these
years are 1900—1903 and 1977—1980 . It is ne-
cessary to note that during those years the jerks
in the SV of magnetic declination were observed
[Mandea, 2001].
Fig. 5 shows the dependence of the changes
of SV(H)-variations (∆SV(H)) on the changes of
mean year magnetic activity index ∆∑(H-Sq) for
SECULAR VARIATIONS OF THE GEOMAGNETIC FIELD AND SOLAR ACTIVITY
Геофизический журнал № 4, Т. 33, 2011 137
magnetic observatories BEL (b) and LVV (a). Cor-
relation is low, but decreasing tendency of ∆SV(H)
with increasing ∆∑(H-Sq) is observed very well. To
investigate long period variations, we have chosen
observatories LNN and COI which have long row
of observations.
Fig. 6 and Fig. 7 show dependence of SV(H)
at BEL on SV(H) at LVV (a, b), SV(H) at KIV on
SV(H) at LVV (c, d) SV(H) at SUA on SV(H) at
LVV(e, f) and so on. The observatories names and
time intervals are shown upwards of ordinate axis.
The straight lines show linear regression equa-
tions between values. These equations are shown
in table 2. Points of crossing these lines and or-
dinate axis show SV(H)0 values. As one can see
the values and signs of SV(H)0 are different for
observatories. If the reference observatory is LVV,
SV(H)0=29,51 nT for COI and SV(H)0=17,43 nT
for HAD. To verify these results, Fig. 8 shows de-
pendence of SV(H) at HAD on SV(H) at COI from
1867 till 1999. Straight line shows linear regression
equation between values. One can see that SV(H)0
is about — 12,33 nT, when reference observatory is
COI, that may say that SV(H)0 is equal to SV(H)0
at COI minus SV(H)0 at HAD.
Correlation between SV(H) becomes worse as
distance between observatories increases. As it was
shown in [Sumaruk T., Sumaruk Yu., 2007] at the
regions where SV(H)0 are equal to zero the intense
tectonic activity is observed. Except short period
Table 2
Observatory SV(H)LVV
Odessa =0,80SV(H)ODE–2,22
Leningrad =0,97SV(H)LNN–4,00
Kiev =0,82SV(H)KIV–2,25
Moscow =0,78SV(H)MOS–2,21
Surlari =0,94SV(H)SUA–2,01
Nurmijarvi =1,03SV(H)NUR–3,59
Belsk =0,83SV(H)BEL+1,29
Niemegk =0,91SV(H)NGK+5,07
Chambon la Foret =0,93SV(H)CLF+14,73
Lerwick =0,98SV(H)LER+7,80
Hartland =1,02SV(H)HAD+17,43
Coimbra =0,97SV(H)COI+29,51
Fig. 5. The dependence of the ∆SV(H) on the ∆∑(H-Sq) for magnetic observatories LVV (a) and BEL (b).
Y. SUMARUK, J. REDA
138 Геофизический журнал № 4, Т. 33, 2011
Fig. 6. Dependence of SV(H) at different observatories on SV(H) at LVV.
(about two years) and long period (about 80 years)
about eleven year period variations are observed.
Fig. 9 shows SV(H) variations at HAD (a) and
LNN (b) observatories but short period variations
are excluded by trapezium method. It is clearly
seen that at the upper part of the solar cycles
SV(H) decreases and at fall stage of solar cycles
SV(H) increases. To exclude these variations mean
per solar cycle SV(H) have been calculated.
Fig. 10 shows dependence of mean per solar
cycles SV(H) at HAD on the values of mean per
solar cycles Wolf’s number from 15-th to 22-nd
cycles. It is easy to see the rectilinear dependence
between the values. Only 20-th cycle doesn’t fol-
low the dependence. We may note that quasi-
sinusoidal variations have also external source.
Conclusions. SV-variations have external and
internal sources. To separate internal source com-
ponent it is necessary to exclude short period
(about two years), middle period (about 11 years)
and long period (about 80 years) variations. Am-
plitudes of short period variations increase with
growing of solar activity and are greater for D-
days than for Q-days. Short periods SV(H) and
SV(Z) change in opposite phases. Anti-correlation
between SV(H) and magnetic activity is observed.
Amplitude of the short period SV(H) variations
decreases with increasing of the magnetic obser-
vatories latitudes. That is to say short period SV(H)
and SV(Z) are generated by external currents.
Middle period (about 11 years) SV also depend
on solar activity. Values of SV(H) decrease at the
SECULAR VARIATIONS OF THE GEOMAGNETIC FIELD AND SOLAR ACTIVITY
Геофизический журнал № 4, Т. 33, 2011 139
Fig. 7. Dependence of SV(H) at different observatories on SV(H) at LVV.
Fig. 8. Dependence of SV(H) at HAD on SV(H) at COI for 1867 till 1999.
upper phase of solar cycles and they increase
at fall phase. To exclude SV dependence on the
cycle solar activity the mean per cycle values are
necessary to be calculated. After excluding short
Y. SUMARUK, J. REDA
140 Геофизический журнал № 4, Т. 33, 2011
Fig. 9. SV(H) variations at HAD (a), LNN (b) with out shot period variation and Wolf number (c).
Fig. 10. Dependence of SV(H) at HAD on mean per solar cycles Wolf’s number.
and middle period SV variations, long period
quasi-sinusoidal SV(H) and SV(Z) variation are
observed. The period of the variations is about 80
years. It may be supposed that quasi-sinusoidal
SV-variations are also connected with solar acti-
vity. Mean per solar cycle values of SV(H) and
the same Wolf numbers for fifteenth to twenty
second cycles are highly correlated. Thus three
types of SV(H) and SV(Z) due to external sources
have been observed.
SECULAR VARIATIONS OF THE GEOMAGNETIC FIELD AND SOLAR ACTIVITY
Геофизический журнал № 4, Т. 33, 2011 141
References
Alexandrescu M. Geomagnetic field direction in Paris
since the mid-XVIth centure // Phys. Earth Planet.
Inter. — 1996. — 98, — P. 321—360.
Golovkov V. P., Kolomijtseva G. I., Konyashchenko L. P.,
Semyonova G. M. The summary of the annual mean
values of magnetic elements at World magnetic
observatories // IZMIRAN. — Iss. XVI. — 1983. —
342 p.
Mandea M. How well is main-field secular variations
known? // Contributions to Geophysics and Geo-
desy. — 2001. — 31, № 1. — P. 233—243.
Strestik J. Long term variations in geomagnetic and solar
activities and secular variations of the geomagnetic
field component // Studia geoph. ed geod. — 1991.
— 35. — P. 1—6.
Sumaruk P. Secular variations of the Earth’s magnetic
field and their long term modulation // Contribu-
tions to Geophysics and Geodesy. — 2001. — 31,
№ 1. — P. 355—356.
Sumaruk Yu. On external sources of secular variations
of the Earth’s magnetic field // Contribution to
Geophysics and Geodesy. — 2001. — 31, № 1, —
P. 353—354.
Sumaruk T., Sumaruk Yu. On separation of the secu-
lar variation of different origins // Publ. Institute of
Geophysics, Pol. Acad. Sci. — 2007. — C-99(398).
— P. 252—259.
Sumaruk P., Feldstein Ya., Porchkhidze Ts. Geomagnetic
field variations at Earth’s poles // Physica solariter-
restris. — 1980. — № 12. — P. 70—78.
|