Development of Cross-Section Library for DYN3D Code
At present, SSTC NRS uses the HELIOS code for generation of few-group cross-section libraries for WWER core calculations. There is an urgent issue of selecting the appropriate approach to implement the cross-section library into the DYN3D code. The paper overviews the application of approaches us...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України
2014
|
Schriftenreihe: | Ядерна та радіаційна безпека |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/97633 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Development of Cross-Section Library for DYN3D Code / I. Ovdiienko, M. Ieremenko, A. Kuchin, V. Khalimonchuk // Ядерна та радіаційна безпека. — 2014. — № 4. — С. 22-25. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-97633 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-976332016-04-01T03:02:18Z Development of Cross-Section Library for DYN3D Code Ovdiienko, I. Ieremenko, M. Kuchin, A. Khalimonchuk, V. At present, SSTC NRS uses the HELIOS code for generation of few-group cross-section libraries for WWER core calculations. There is an urgent issue of selecting the appropriate approach to implement the cross-section library into the DYN3D code. The paper overviews the application of approaches used by SSTC NRS, such as a multidimensional table and polynomial dependences. The capabilities and possible extension of each approach are described with inherent advantages and disadvantages. In addition, the model development and cross-section preparation for the WWER-1000 radial reflector taking into account discontinuity factors are discussed. Brief results of calculations with the use of different approaches are presented. На даний час ДНТЦ ЯРБ використовує спектральний код HELIOS для підготовки малогрупових бібліотек нейтронно-фізичних констант тепловидільних збірок (ТВЗ) активних зон ВВЕР. У процесі розробки моделей ТВЗ виникає актуальна проблема вибору правильного підходу до реалізації бібліотеки констант у коді DYN3D. У даній роботі надано результати досліджень підходів, що використовує ДНТЦ ЯРБ, — реалізації бібліотеки у вигляді багатовимірної таблиці й поліноміальних залежностей. Розглянуто підходи ДНТЦ ЯРБ до вирішення проблеми розробки моделі та підготовки нейтронно-фізичних констант радіального відбивача для ВВЕР-1000 з урахуванням факторів розривності. Наведено короткі результати розрахункових досліджень при використанні різних підходів. В настоящее время ГНТЦ ЯРБ использует спектральный код HELIOS для подготовки малогрупповых библиотек нейтронно-физических констант тепловыделяющих сборок активных зон ВВЭР. В ходе разработки моделей тепловыделяющих сборок возникает актуальная проблема выбора правильного подхода к реализации библиотеки констант в коде DYN3D. В данной роботе представлены результаты исследований подходов, используемых ГНТЦ ЯРБ, — реализации библиотеки в виде многомерной таблицы и полиномиальных зависимостей. Показаны подходы к решению проблемы разработки модели и подготовки нейтронно-физических констант радиального отражателя для ВВЭР- 1000 с учетом факторов разрывности. Даны краткие результаты расчетных исследований при использовании различных подходов. 2014 Article Development of Cross-Section Library for DYN3D Code / I. Ovdiienko, M. Ieremenko, A. Kuchin, V. Khalimonchuk // Ядерна та радіаційна безпека. — 2014. — № 4. — С. 22-25. — Бібліогр.: 6 назв. — англ. 2073-6231 http://dspace.nbuv.gov.ua/handle/123456789/97633 621.039.512 en Ядерна та радіаційна безпека Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
At present, SSTC NRS uses the HELIOS code for generation of few-group cross-section
libraries for WWER core calculations. There is an urgent issue of selecting the appropriate
approach to implement the cross-section library into the DYN3D code. The paper overviews the
application of approaches used by SSTC NRS, such as a multidimensional table and polynomial
dependences. The capabilities and possible extension of each approach are described with
inherent advantages and disadvantages. In addition, the model development and cross-section
preparation for the WWER-1000 radial reflector taking into account discontinuity factors are
discussed. Brief results of calculations with the use of different approaches are presented. |
format |
Article |
author |
Ovdiienko, I. Ieremenko, M. Kuchin, A. Khalimonchuk, V. |
spellingShingle |
Ovdiienko, I. Ieremenko, M. Kuchin, A. Khalimonchuk, V. Development of Cross-Section Library for DYN3D Code Ядерна та радіаційна безпека |
author_facet |
Ovdiienko, I. Ieremenko, M. Kuchin, A. Khalimonchuk, V. |
author_sort |
Ovdiienko, I. |
title |
Development of Cross-Section Library for DYN3D Code |
title_short |
Development of Cross-Section Library for DYN3D Code |
title_full |
Development of Cross-Section Library for DYN3D Code |
title_fullStr |
Development of Cross-Section Library for DYN3D Code |
title_full_unstemmed |
Development of Cross-Section Library for DYN3D Code |
title_sort |
development of cross-section library for dyn3d code |
publisher |
Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/97633 |
citation_txt |
Development of Cross-Section Library for DYN3D Code / I. Ovdiienko, M. Ieremenko, A. Kuchin, V. Khalimonchuk // Ядерна та радіаційна безпека. — 2014. — № 4. — С. 22-25. — Бібліогр.: 6 назв. — англ. |
series |
Ядерна та радіаційна безпека |
work_keys_str_mv |
AT ovdiienkoi developmentofcrosssectionlibraryfordyn3dcode AT ieremenkom developmentofcrosssectionlibraryfordyn3dcode AT kuchina developmentofcrosssectionlibraryfordyn3dcode AT khalimonchukv developmentofcrosssectionlibraryfordyn3dcode |
first_indexed |
2025-07-07T05:17:46Z |
last_indexed |
2025-07-07T05:17:46Z |
_version_ |
1836964084015169536 |
fulltext |
22 ISSN 2073-6237. ßäåðíà òà ðàä³àö³éíà áåçïåêà 4(64).2014
УДК 621.039.512
I. Ovdiienko, M. Ieremenko,
A. Kuchin, V. Khalimonchuk
State Scientific and Technical Center for Nuclear and Radiation
Safety, Kyiv, Ukraine
Development
of CrossSection Library
for DYN3D Code
At present time SSTC NRS uses the HELIOS code for generation of few-
group cross-section libraries for WWER core calculations.
There is an actual problem choosing the appropriate approach
to implement the cross-section library into the DYN3D code. The paper
overviews the application of approaches used by SSTC NRS, such
as a multidimensional table and polynomial dependences. The capabilities
and possible extension of each approach are described with inherent
advantages and disadvantages. In addition, the model development and
cross-section preparation for the WWER-1000 radial reflector taking into
account discontinuity factors are discussed. Brief results of calculations
with the use of different approaches are presented.
K e y w o r d s: WWER; cross-section library; fuel assembly; reflector.
Ю. М. Овдієнко, М.Л.Єременко, А. В. Кучин, В. А. Халімончук
Розвиток бібліотеки нейтронно-фізичних констант для
коду DYN3D
На даний час ДНТЦ ЯРБ використовує спектральний код HELIOS
для підготовки малогрупових бібліотек нейтронно-фізичних констант
тепловидільних збірок (ТВЗ) активних зон ВВЕР. У процесі розробки мо-
делей ТВЗ виникає актуальна проблема вибору правильного підходу до
реалізації бібліотеки констант у коді DYN3D. У даній роботі надано ре-
зультати досліджень підходів, що використовує ДНТЦ ЯРБ, — реалізації
бібліотеки у вигляді багатовимірної таблиці й поліноміальних залеж-
ностей. Розглянуто підходи ДНТЦ ЯРБ до вирішення проблеми розроб-
ки моделі та підготовки нейтронно-фізичних констант радіального від-
бивача для ВВЕР-1000 з урахуванням факторів розривності. Наведено
короткі результати розрахункових досліджень при використанні різних
підходів.
К л ю ч о в і с л о в а: ВВЕР; нейтронно-фізичні константи;
тепловидільна збірка; відбивач.
© I. Ovdiienko, M. Ieremenko, A. Kuchin, V. Khalimonchuk, 2014
T
he DYN3D code is widely used at SSTC NRS in li-
censing activities both for steady-state calculations
in reviews of safety substantiation for fuel reload-
ing and transient calculations for emergency modes
of WWER reactors of Ukrainian NPPs.
Since 2006 SSTC NRS has been using the modern spectral
HELIOS code for preparation of few-group cross-section librar-
ies instead of the out-of-date one-dimensional NESSEL code.
It allowed SSTC NRS to increase the accuracy in calculations
of the entire complex DYN3D/cross-section library.
The basic parameterization of cross-sections in DYN3D is
given in the following way:
( ) ( ){ }
( ) ( ){ }
( ){ }
mod mod, 0 mod mod, 0
mod mod, 0 mod mod, 0
Σ = Σ + α − ×
× + β γ − γ + β γ − γ ×
× + δ γ − γ + δ γ − γ ×
× γ −
0
mod mod,0
2
, 1 , 2
2
, 1 , 0 , 2 , 0
mod
1 1
1
1
1
exp ,
s
s s
s b b s b b
s f
T T
C C C C
T T
where Σ is the actual cross-section; 0 is the reference cross-
section; αs, βs,1, βs,2, δs,1, δs,2, γs are parameterization coefficients;
Òmod, Òf , γmod, Ñb are actual thermophysical parameters; Òmod, 0,
γmod, 0, Ñb,0 are parameters of reference state.
Each parameterization coefficient is represented as a sec-
ond-order polynomial dependence versus fuel burnup B,
as Pi = Pi,0*(1+αi,1B+αi,2B
2).
In general, results with use of the basic parameterization
of cross-sections are quite acceptable besides the reactivity co-
efficient on moderator temperature; particularly on hot zero
power states where it shows low absolute values and relative
errors more than 100 %.
The significant drawback of the basic cross-section library
parameterization is the impossibility to use discontinuity fac-
tors. The use of discontinuity factors for WWER-1000 fuel as-
semblies does not have a significant effect. However, the cross-
section for the radial reflector without discontinuity factors
gives too high discrepancy in power distribution that can reach
up to 10 % for peripheral assemblies. This occurs because
the HELIOS library for fuel assemblies uses old parameteriza-
tion for the radial reflector in which cross-sections were ad-
ditionally adapted by auxiliary program for application without
discontinuity factors.
Elaboration of basic XS parameterization. The parameteriza-
tion was improved by adding the third-order polynomial depen-
dence of moderator density β3 and boron acid concentration δ3.
( ) ( ) ( ){ }
( ) ( ){
( ) }
( ){ }
mod mod, 0 mod mod, 0 mod mod, 0
mod mod, 0 mod mod, 0
mod mod, 0
0
mod mod,0
2 3
1 2 3
2
1 , 0 2 , 0
3
3 , 0
mod
1 1
1
1
1
exp .
b b b b
b b
f
T T
C C C C
C C
T T
Σ = Σ + α − ×
× + β γ − γ + β γ − γ + β γ − γ ×
× + δ γ − γ + δ γ − γ +
+δ γ − γ ×
× γ −
Additionally, the linear dependence of change in the mod-
erator density with parameterization coefficients on boron
ISSN 2073-6237. ßäåðíà òà ðàä³àö³éíà áåçïåêà 4(64).2014 23
Development of Cross-Section Library for DYN3D Code
acid concentration was introduced in form of δi= δi0 + acij
(∆γ).
The third-order polynomial dependence on fuel burnup
Pi = Pi, 0(1 + αi,1B + αi, 2B
2 + αi,3B
3) was also added.
The improved basic cross-section library parameteriza-
tion allowed a slight increase in the accuracy of calculating
the boron concentration and axial power distribution. However,
the reactivity coefficient on moderator temperature remained
unsatisfactory.
Further elaboration of the basic cross-section parameteriza-
tion consisted in introducing the discontinuity factors and pin
power distributions from the spectral code with the possibility
to increase the calculation accuracy and extend the capabilities
of DYN3D code.
XS library in form of multidimensional tables. The new cross-
section library was prepared for WWER-1000 based on the
OECD/NEA and U.S. NRC PWR MOX/UO2 core transient
benchmark. This is a five-dimensional table of cross- section
with dependence on burnup, moderator density, boron concen-
tration, fuel and moderator temperature.
The accuracy of this multidimensional table cross-section
library will depend on meshing of the whole range of thermo-
hydraulic variables. The meshing should be based on balance
between the error caused by linear interpolation of cross-sec-
tions and the reasonable total number of branch calculations
that will define calculation time for library preparation. Based
on this analysis, we chose 7 branches for moderator density,
4 branches for boron concentration and fuel temperature, and
3 branches for moderator temperature (Table 1). The total num-
ber of branches to cover the whole range of change in thermo-
hydraulic parameter amounts to 336. Further meshing causes
difficulties with calculation time for library preparation because
adding of one branch increases the total number of branches by
two times.
Table 1. Chosen parameters for multidimensional tables
¹
burnup
step
Burnup,
Moderator
density,
3
Boron
concentration,
Fuel
temperature,
K
Moderator
temperature,
K
1 0.0 200.0 0.0 293.0 293.0
2 0.5 400.0 4.0 793.0 563.0
3 1.0 500.0 8.0 1393.0 623.0
4 3.0 600.0 16.0 2593.0 –
5 6.0 700.0 – – –
6 9.0 800.0 – – –
7 12.0 1000. – – –
… … Total 336 branches for different thermo-hy-
draulic parameters25 66.0
Use of the multidimensional table cross-section library
(with chosen parameters of branches) increases the accuracy
of calculating neutron-physical characteristics of reactor core
in comparison with the parameterization form of library, first
of all accuracy of reactivity coefficient on moderator tem-
perature at HZP (Table 2). It also covers the whole range of
changes in core thermal-hydraulic parameters both for normal
operation (hot and cold states) and for accidents with admis-
sible accuracy.
Besides the much greater total number of calculating branch-
es in comparison with the library with improved parameteriza-
tion (336 vs. 44), this form of library has one more disadvantage.
The use of multidimensional table library significantly increases
the DYN3D calculating time — by approximately three times.
Moreover, in some calculating cases, the iterations were not
converged in contrast to the library with improved parameter-
ization under the same convergence parameters.
Table 2. Reactivity coefficient on moderator temperature
at HZP with different types of XS library
NPP unit
number
Experiment BIPR
DYN3D
(polyn.
param.)
DYN3D
(table
param.)
KhNPP-2,
loading ¹ 1
–6.68( T)
–7.38( T)
–6.93 –6.16 –5.41
KhNPP-2,
loading ¹ 2
–4.3 –5.73 –10.23 –6.47
KhNPP-2,
loading ¹ 3
–9.3 –9.16 –13.16 –9.40
KhNPP-2,
loading ¹ 4
–12.0 –11.10 –15.36 –11.65
ZNPP-1,
loading ¹ 22
–5.60 –4.23 –12.64 –8.96
ZNPP-1,
loading ¹ 23
–7.60 –5.54 –13.61 –9.96
ZNPP-1,
loading ¹ 24
–8.80 –9.09 –13.55 –9.66
Preparation of cross-section for radial reflector. The aim
of preparing the advanced cross-section library for radi-
al reflector is to increase the accuracy of power distribution
in the core owing to more precise geometry of in-core com-
ponents. Specifically, five different XS sets (Fig. 1) calculated
by HELIOS were introduced into the library instead of one set
in one-dimensional geometry calculated by the NESSEL code.
Fig. 1. Five reflector cells of advanced
cross-section library for radial reflector
The advanced cross-section library for the radial reflector
was supplemented with reflector discontinuity factors. The dis-
continuity factors were calculated by analytical solution of the
24 ISSN 2073-6237. ßäåðíà òà ðàä³àö³éíà áåçïåêà 4(64).2014
I. Ovdiienko, M. Ieremenko, A. Kuchin, V. Khalimonchuk
diffusion equation for two-dimensional hexagonal reactor
geometry in non-multiplying material with the approach de-
scribed in [4].
The model of each reflector cell for HELIOS calculations
represents a macro cell of the considered cell surrounded by six
neighboring ones, some of them (from 1 to 3) are fuel assembly
cells (Fig. 2).
The RDFs calculated with the mentioned approach for in-
troduction into the advanced cross-section for radial reflec-
tor were averaged over sides of the reflector cells neighboring
the core. It is necessary to note that the cross-section with
improved parameterization allows the introduction of RDF for
each of the six hexagon sides.
Effect from the introduction of advanced cross-section
for radial reflector was estimated for several fuel campaigns
of Ukrainian NPPs. Typical assembly-wise power distributions
with use of the averaged 1D reflector NESSEL XS and prepared
sets of 2D reflector HELIOS XS are presented in Fig. 3. As fol-
lows from the figure, the prepared sets of XS do not only in-
crease the accuracy of power distribution for peripheral assem-
blies, but also decrease its maximal discrepancy near the core
center (for the case from δkq = 0.057 up to δkq = 0.037).
Fig. 2. One (third) cell
of radial reflector
and model with surrounded
cells for HELIOS model
Fig. 3. Assembly-wise power distributions with use of averaged 1D reflector
NESSEL XS (a) and prepared sets of 2D reflector HELIOS XS (b)
à b
ISSN 2073-6237. ßäåðíà òà ðàä³àö³éíà áåçïåêà 4(64).2014 25
Development of Cross-Section Library for DYN3D Code
The multidimensional table
cross-section library gives the possibility to take into account
spectral effect during reactor core burnup calculation using
the DYN3D code. The DYN3D code includes the approach
for spectral effect accounting based on usage of plutonium-239
concentration as the spectral history indicator [5].
For this purpose, the multidimensional table cross-section
library was supplement with an additional sub-library. The fol-
lowing parameters were prepared for the sub-library:
- 239Pu and 238U concentrations in standard depletion,
- microscopic cross-sections needed for 239Pu calculation,
- history coefficients.
In the sub-library, these cross-sections and their historical
coefficients are also given in multidimensional tables.
The consideration of spectral effect is quite appreciable al-
ready for the first fuel campaign, starting from zero fuel bur-
nup (AER-19 benchmark, first loading, Fig. 4). The calcula-
tion accuracy increased not only for axial profile but also for
boron acid concentration. The trend of distortion of axial power
profile in the core upper part agrees well with results of direct
accounting of spectral effect by moderator density for the fuel
campaign presented in [6].
Conclusions
1. Use of the multidimensional table cross-section library
(with chosen parameters of branches) increases the accuracy
of calculating neutron-physical characteristics of reactor core
in comparison with the parameterization form of library, first
of all accuracy of reactivity coefficient on moderator tempera-
ture at HZP. It also covers the whole range of changes in core
thermal-hydraulic parameters both for normal operation
(hot and cold states) and for accidents with admissible accuracy.
2. The main disadvantages of the multidimensional table
cross-section library include a much higher total number of cal-
culating branches and worse convergence of iteration process,
significantly increasing the DYN3D calculating time.
3. Introduction of advanced cross-sections for the radial
reflector increases the accuracy of power distribution for pe-
ripheral assemblies and decreases its maximal discrepancy near
the core center.
4. The accounting of spectral effect increases the calcula-
tion accuracy both for axial profile and for boron acid concen-
tration and agrees with results of other approaches to spectral
effect accounting.
References
1. Grundmann U., Rohde U., Mittag S., Kliem S. (2005), “DYN3D,
Version 3.2, Code for Calculation of Transient in Light Water Reactors
(LWR) with Hexagonal or Quadratic Fuel Elements. Description
of Models and Methods”, Report FZR-434, Rossendorf.
2. Lötsch T., Khalimonchuk V., Kuchin A. (2009), “Proposal
of a Benchmark for Core Burnup Calculations for a VVER-1000
Reactor Core”, Proceeding of the 19th Symposium of AER on VVER
Reactor Physics and Reactor Safety.
3. “HELIOS methods. Version 1.10”, Studsvik® Scandpower,
April 2008.
4. Mittag S., Petkov P.T., Grundmann U. (2003), “Discontinuity
Factors for Non-Multiplying Material in Two-Dimensional Hexagonal
Reactor Geometry”, Annals of Nuclear Energy 30, pp. 1347—1364.
5. Bilodid I., Mittag S. (2010), “Use of the Local Pu-239
Concentration as an Indicator of Burnup Spectral History in DYN3D”,
Annals of Nuclear Energy, Vol. 37, Issue 9, pp. 1208—1213.
6. Bilodid I., Ovdiienko I., Mittag S., Kuchin A., Khalimonchuk V.,
Ieremenko M. (2012/04), “Assessment of Spectral History Influence
on PWR and WWER core”, Kerntechnik, pp. 278—285.
Îòðèìàíî 27.10.2014.
Fig. 4. Effect of accounting of spectral effect for boron acid concentration (a)
and axial power profile in the most loaded FA (b) (AER-19 benchmark, first loading)
à b
|