Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting

New experimental results on studies of the structure, element and phase composition of hybrid coatings deposited on a substrate of stainless steel AISI 321 are presented using combined application of several methods of coating deposition (plasma-detonation and vacuum arc ones) with subsequent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Kylyshkanov, M.K.
Format: Artikel
Sprache:English
Veröffentlicht: Науковий фізико-технологічний центр МОН та НАН України 2007
Schriftenreihe:Физическая инженерия поверхности
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/98826
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting / M.K. Kylyshkanov // Физическая инженерия поверхности. — 2007. — Т. 5, № 3-4. — С. 149–154. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-98826
record_format dspace
spelling irk-123456789-988262016-04-19T03:02:06Z Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting Kylyshkanov, M.K. New experimental results on studies of the structure, element and phase composition of hybrid coatings deposited on a substrate of stainless steel AISI 321 are presented using combined application of several methods of coating deposition (plasma-detonation and vacuum arc ones) with subsequent surface treatment by a high-current electron beam (HCEB). We found that an increase in the energy density enhanced the processes of mass-transfer and allowed one to produce denser powder coatings. We demonstrated the results of corrosion tests for TiN/Al₂O₃ coatings in their initial state and after electron-beam modification of their surfaces. We obtained an essential increase in the hybrid coating resistance to corrosion in 0.5 M solution of H₂SO₄ after electron beam treatment. Представлено нові експериментальні результати досліджень фазового складу гібридних покриттів TiN/Al₂O₃, осаджених на підкладинку з нержавіючої сталі типу AISI 321 комбінованим способом. Показано, що в процесі кристалізації порошку Al₂O₃ на підкладинці формуються зародки його γ-фази і метастабільних модифікацій. Вакуумно-дугове осадження нітриду титана на підшар Сr або порошку корунду дозволяє сформувати плівку, матриця якої складається з ГЦК-TiN з домішкою його тетрагональної модифікації ε-TiN. Знайдено режими оплавлення поверхні низькоенергетичним потужнострумовим електронним пучком (НСЕП), що дозволяють активувати ряд поліморфних перетворень типу γ-, β-, δ-, θ → α-Al₂O₃ і ε-TiN → TiN і сформувати покриття з α-фази корунду і кубічної модифікації TiN. Представлены новые экспериментальные результаты исследований фазового состава гибридных покрытий TiN/Al₂O₃, осажденных на подложку из нержавеющей стали типа AISI 321 комбинированным способом. Показано, что в процессе кристаллизации порошка Al₂O₃ на подложке формируются зародыши его γ-фазы и метастабильных модификаций. Вакуумно-дуговое осаждение нитрида титана на подслой Сr или порошка корунда позволяет сформировать пленку, матрица которой состоит из ГЦК-TiN с примесью его тетрагональной модификации ε-TiN. Найдены режимы оплавления поверхности низкоэнергетическим сильноточным электронным пучком (НСЭП), позволяющие активировать ряд полиморфных превращений типа γ-, β-, δ-, θ → α-Al₂O₃ и ε-TiN → TiN и сформировать покрытие из α-фазы корунда и кубической модификации TiN. 2007 Article Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting / M.K. Kylyshkanov // Физическая инженерия поверхности. — 2007. — Т. 5, № 3-4. — С. 149–154. — Бібліогр.: 5 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/98826 539.61:669.018 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description New experimental results on studies of the structure, element and phase composition of hybrid coatings deposited on a substrate of stainless steel AISI 321 are presented using combined application of several methods of coating deposition (plasma-detonation and vacuum arc ones) with subsequent surface treatment by a high-current electron beam (HCEB). We found that an increase in the energy density enhanced the processes of mass-transfer and allowed one to produce denser powder coatings. We demonstrated the results of corrosion tests for TiN/Al₂O₃ coatings in their initial state and after electron-beam modification of their surfaces. We obtained an essential increase in the hybrid coating resistance to corrosion in 0.5 M solution of H₂SO₄ after electron beam treatment.
format Article
author Kylyshkanov, M.K.
spellingShingle Kylyshkanov, M.K.
Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting
Физическая инженерия поверхности
author_facet Kylyshkanov, M.K.
author_sort Kylyshkanov, M.K.
title Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting
title_short Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting
title_full Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting
title_fullStr Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting
title_full_unstemmed Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting
title_sort properties of hybrid tin/al₂o₃ coatings using electron beam melting
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/98826
citation_txt Properties of hybrid TiN/Al₂O₃ coatings using electron beam melting / M.K. Kylyshkanov // Физическая инженерия поверхности. — 2007. — Т. 5, № 3-4. — С. 149–154. — Бібліогр.: 5 назв. — англ.
series Физическая инженерия поверхности
work_keys_str_mv AT kylyshkanovmk propertiesofhybridtinal2o3coatingsusingelectronbeammelting
first_indexed 2025-07-07T07:07:51Z
last_indexed 2025-07-07T07:07:51Z
_version_ 1836971009726480384
fulltext ФІП ФИП PSE, 2007, т. 5, № 3-4, vol. 5, No. 3-4 149 INTRODUCTION Servicing characteristics of plasma-detonation produced powder coatings are mainly determined by the state of their surfaces (porosity and roughness) as by well as the physical and mecha- nical characteristics of deposited materials. It is known that an oxide aluminum ceramic has good physical, mechanical and as servicing properties [1]. One of the ways to harden the ceramic coa- tings is to deposit TiN films to them and subse- quently melt them by electron beams, high-pow- der ion beams and plasma jets. This way inten- sifies the processes of mass transfer and diffusion due to intensive heating and melting. Duration and intensity of heating affects the relief of the formed surface and the mechanisms of phase transformations in the deposited materials. The- refore, to produce hard and simultaneously duc- tile coatings with a high corrosion resistance and a good adhesion, one needs a detailed selec- tion of deposition regimes and subsequent mel- ting taking into account individual features of deposited materials. EXPERIMENTAL METHODS Protecting hybrid coatings TiN/Al2O3 were ma- nufactured on a substrate of austenitic stainless steel AISI 321 (composition: 18wt.% Cr, 9 wt.% Ni, 1 wt.% Ti, 0.3wt.%Cr, Fe the rest, 1.1mm thick). Powder coatings of aluminum oxide (45 to 60 µm thick) were deposited using a high-ra- te pulsed plasma jet by the facility “Impulse-5” (the regimes (conditions) and techniques for deposition are presented in [2]).To increase the corrosion resistance of the protecting ceramic co- ating and to eliminate defects of the plasma-de- tonated deposited powder coating in the vacuum- arc source of “Bulat-3T” type, we additional- ly deposited films of titanium nitride of 1.5 to 2.0 µm thick. To smooth the surface structure non-uniformities, to outgas coating bulk and to enhance diffusion and mass transfer processes in the “coating-substrate”, we melted the surfaces of hybrid coatings using a high-current electron beam. Thermal activation was realized by an electron-beam accelerator “U-212”. Mechanical properties of coatings based on of oxide aluminum depend on the phase com- position of this material [1]. For example, an inc- rease of the content of metastable phases in the near surface region of Al2O3 essentially decreases the surface hardness and its resistance to the ac- tion of aggressive media. However, at the same time, we observed good adhesion of the coatings with the surface of steel substrates unlike the coa- tings content 100% of α-phase. The application of high-energy beams for selected substrate thick- ness was impossible due to intensive substrate deformation. Therefore to pack (seal) the powder coatings, we performed two-time melting of the surfaces under the following HCEB parameters: first the coatings were melted by an electron be- am of 760 W/cm2 power density (U = 30 kB, IB = 20 mA, νB = 60 m/hour, dB = 0.1 m); then UDC 539.61:669.018 PROPERTIES OF HYBRID TiN/Al2O3 COATINGS USING ELECTRON BEAM MELTING M.K. Kylyshkanov East-Kazakstan State Technological University, (Ust’-Kamenogorsk), Kazakstan Received 20.07.2007 New experimental results on studies of the structure, element and phase composition of hybrid coatings deposited on a substrate of stainless steel AISI 321 are presented using combined application of several methods of coating deposition (plasma-detonation and vacuum arc ones) with subsequent surface treatment by a high-current electron beam (HCEB). We found that an increase in the energy density enhanced the processes of mass-transfer and allowed one to produce denser powder coatings. We demonstrated the results of corrosion tests for TiN/Al2O3 coatings in their initial state and after electron-beam modification of their surfaces. We obtained an essential increase in the hybrid coating resistance to corrosion in 0.5 M solution of H2SO4 after electron beam treatment. ФІП ФИП PSE, 2007, т. 5, № 3-4, vol. 5, No. 3-4150 the coatings were cooled in the accelerator cham- ber down to room temperature. After above treat- ments a part of the samples was used for studies, the other part was HCEB melted (U = 30 kB, νB = 60 m, IB = 10, 15, 20, 25 and 35 mA). The element composition of TiN/Al2O3 and TiN/Cr/Al2O3 coatings was studied using the Ru- therford back-scattering (RBS) by the accele- rating facility UPK-2-1(Nuclear Physics Institu- te, Almaty, Kazakstan) having 0.8 and 1.5 MeV proton beam energy and raster electron micro- scopy with micro-analysis (REMMA-102 micro- scope with WDS-2 adapter(Selmi, Sumy, Ukrai- ne). An analysis of the coating microstructure and of the transition zone was performed using a me- thod of selective chemical etching of cross-sec- tions with a metallographic microscope Neophot 30. To study the non-uniformities of powder coa- tings we performed an etching of various inclu- sions by a solution of hydrofluoric acid (50 ml HF, 50 ml H2O) for 10 minutes. The steel struc- ture at the transition steel part was determined after subsequent grinding and etching (t = 5 min) in hydrochloric acid. The corrosion resistance of the prepared coatings was studied using electro- chemical techniques. A saturated calomel elect- rode was used as a reference electrode and a gra- phite one was used as an auxiliary electrode for all measurements. The tests in a 0.5 M H2SO4 solution were performed in the potential region –1000 to +1500 mV at ambient temperature. Five rapid scans (scan rate = 25 mV/s) followed by one slow scan (scan rate = 0.25 mV/s) were performed on each specimen. EXPERIMENTAL RESULTS AND DISCUSSION As a result of electron beam surface bombard- ment the coatings are melted and a subsequent hardening due to heat removal from surface bulk occurs. The efficiency of these processes depends on the electron beam energy parameters and on the physical properties of melted materials. As a result of high-rate electron deceleration occurring in the coating material their interaction with material atoms and electrons is initiated. A the source is formed in the material bulk and it has a characteristic maximum at some depth. A degree of surface heating was determined by solution of a problem about body heating [3]. According to performed calculations, the temperature in the coating near surface region rose to about 890K (In= 10 mA, q = 380 W/cm2); about 1340 K (In = 15 mA, q = 570 W/cm2); about 1730 K (In = 20mA, q = 760 W/cm2); about 2230 K (In = 25 mA, q = 960 W/cm2); about 3100 K (In = 35mA, q = 1340 W/cm2). Fig. 1 shows the morphology of hybrid coa- ting surfaces depending on the value of energy introduced to an area unit. Since aluminum oxide and titanium nitride are refractory materials, and their melting temperatures are respectively T(α-Al2O3) = 2323 K [4] and T(TiN = 3478 K, a (non-essential) decrease in surface roughness (Fig.1b-d) is realized due to partial and full mel- ting, as well as to the action of shock waves. Ba- sing on obtained photos for coatings and per- formed calculations, one can say that the decrease in surface roughness in the case of fig. 1c is a consequence of a complex action of temperature and deformation-wave mechanisms. Near the melting point the surface relief began to change significantly (fig. 1c). One can see non-uniformly formless regions with an obvious melting distributed over the sur- face. We consider that these non-uniformities are themselves the centers of formation of formless regions. But heating of the powder sublayer is not enough, since one does not observe an evi- dent melting of the upper layer of titanium nit- ride. The coating surface in the region of valleys has dark inclusions, in which, according to the performed element analysis, the basic component is aluminum. Distribution of components over the surface (as it was the case of one-time mel- ting) was not uniform (tabl. 1). We should also like to note that carbon starts to appear in some local surface regions. This fact can be explained by a diffusion of this element from the powder sublayer towards the surface at the moment of melting. Action of HCEB with 1340 W/cm2 power density on the coating surfaces allows heating of the near surface region to the temperature of titanium nitride melting. Such regimes of treat- ment are accompanied by an intensive change in the geometry of the surface layer of the alumi- PROPERTIES OF HYBRID TiN/Al2O3 COATINGS USING ELECTRON BEAM MELTING ФІП ФИП PSE, 2007, т. 5, № 3-4, vol. 5, No. 3-4 151 num oxide surface, which occurs in the zone whe-re direct thermal action of HCEB leads to a transition towards an overheated state. The mate- rial in the near surface region is refined. As a consequence, the coating roughness decreases. Near the melting point titanium nitride becomes more ductile. The coating becomes practically uniform in its chemical composition. Taking into account the data on a quantitative element con- tent, one should note that more intensive material melting resulted in increased aluminum and carbon concentration in the surface region toge- ther with a simultaneous decrease in titanium and nitrogen content. According to RBS results, a repeated action of the high-current electron beam on the surface under the regime of melting provides an intensive Fig. 1. Surface morphology of hybrid coatings after electron – beam treatment: a) – an initial state; b) – one cycle melting (q = 760 Wt/cm2); c), d) – second cycle melting (q = 960 Wt/cm2 and 1340 Wt/cm2); 1, 2 – points of local element analysis. a) b) c) d) Table 1 Chemical composition of the surface of hybrid coatings TiN/Al2O3 (mas. %) Region of analysis Other ele- ments N O Al Ti C Si Fe U = 30 kV, IB = 25 mA, vB = 60 m/hour, fig. 1c U = 30 kV, IB = 35 mA, vB = 60 m/hour, fig. 1d p. № 1 0.69 39.93 56.04 3.34 – – – – p. № 1 19.01 – 10.35 70.21 – – 0.43 – p. № 2 26.67 73.33 – – – – – – p. № 2 4.70 2.29 1.58 20.33 67.69 0.51 0.26 Na, S, Cl, K, Ca Integral element compos. 0.05 21.42 1.71 75.62 – 1.20 – – Integral element compos. 2.75 5.23 6.73 62.82 – 1.75 15.11 Cr, Ni M.K. KYLYSHKANOV ФІП ФИП PSE, 2007, т. 5, № 3-4, vol. 5, No. 3-4152 activation of mass transfer processes for elements composing the surface coating layer (Ti, N, C). Fig. 2a shows RBS energy spectra measured for TiN/Al2O3/steel samples for two various energies (the initial energy being 0.8 MeV and 1.5 MeV). As one can see from these spectra, in the case of low energy an analyzing ion beam did not allow us to divide the contributions from TiN and Al2O3 spectra due to essentially thick Al2O3 layer. Using RBS spectra and the Simnra program we cal- culated the element distribution profiles for the coatings which were irradiated with 760 W/cm2 power density (fig. 2b) and (760 +1340) W/cm2 (fig. 2c). The obtained experimental results show that high current electron beam irradiation with- out visible melting of the coating and subsequent increase in the power density to 35 J/cm2 resulted in a smoothing of the titanium concentration profile almost to 5 µm. This feature is related to titanium diffusion to the sample bulk (as well as to the limits of RBS sensitivity – the least con- centration boundary) The spectra show that alu- minum penetrated into the TiN film and forma- tion of a AlTi compound was possible, as is con- firmed by the same behavior of Al and Ti at the depth 2.5 to 4 µm. It was not the case when the energy density was significantly lower. Additionally, if one applies the known ratio in count intensities (when a step was apparent in the spectra), one can evaluate the stoichiometry of the assumed compound, which was close to Al50Ti50. To determine the degree of uniformity of the material chemical composition, we pre- pared cross-sections of TiN/Al2O3 coatings. Ac- cording to [5] a solution of HCl acid etched va- rious inclusions for 5 minutes remaining the alu- minum oxide stable. The photo of the cross-section presented in fig. 3a shows non-uniformely distributed dark inclusions. We relate these inclusions in the near surface and central parts to pores occurring in the coating structure. The α-phase of aluminum oxide has a high hardness and a low ability to deformation under normal conditions and the- refore was badly polished. Closer to the contact region with the substrate the concentration of those dark inclusions in- creased. We consider that the changes in the ref- lexive ability of this region were a consequence of etching off the substrate elements in the steel contact region with the aluminum oxide powder. The conclusion that most of dark inclusions are pores is confirmed by results of etching of TiN/ Al2O3 coatings, which were melted by HCEB at 1340 W/cm2 power density. Fig. 3b shows the cross- section of one of the regions of such coa- tings. Dark inclusions are practically absent in the near surface and the central part of this region. It follows that the action of heat field of the electron beam allows one to seal the powder coatings. Strong etching of the transition region confirms the formation of strong bonds between the corundum powder and the metallic base. Results of X-ray structure analysis show a variety of coating phase composition after melting by the electron beam [2]. Aluminum oxide is a uni- que material in its physical and chemical pro- perties and standard agents do not affect it [5]. Therefore under usual conditions we set a pro- blem non to etch some concrete phases Al2O3 in a) b) c) Fig. 2. a) Energy spectra of ion back-scattering measured for hybrid coatings (TiN/Al2O3/steel) taken in HCEB-irradiated region. The energy of incident ions was respectively: 1.5 MeV (a top curve, irradiation density of the electron beam was (760 + 1340) Wt/cm2), 0.8MeV (a lower curve, HCEB irradiation density was 760 Wt/cm2); Element profiles taken from RBS spectra with ion energy 1.5 MeV for the hybrid coating after HCEB irradiation (b)– powder density of 760 Wt/cm2, c) – powder density of (760 + 1340) Wt/cm2). PROPERTIES OF HYBRID TiN/Al2O3 COATINGS USING ELECTRON BEAM MELTING ФІП ФИП PSE, 2007, т. 5, № 3-4, vol. 5, No. 3-4 153 the given sublayer, but tried to change their color. Photos obtained after cross sectioning of these coatings were similar (fig. 3c). Taking into account the reference data [5] and the obtained photos, we now can say that the matrix of the sublayer of aluminum oxide powder is formed by α-phase (domination of grey and dark grey colors) and a mixture of metastable modification of the given material. We would like to note that a trigonal structure of aluminum oxide is composed in most cases of small grains, which are evidently seen on photos with 4000 magnification. So it is difficult to see the grain structure on these photos, and the biggest inclusions which we relate to Al2O3 α-phase are marked by arrows. Corresponding data on the sample corrosion after their treatment in sulphuric acid solution 0.5 M under temperature of environment are presented in tabl. 2. The corrosion potential in the case of steel samples without coating was – 445 mV. It essentially decreased in the case of samples with coatings. The decrease in corrosion potential and passivation current density in the case of samples with coatings indicates an increase in their corrosion resistance due to a protecting effect of the deposited layer. Improvements were more evident in the case of samples which were subjected to HCEB treatment because of an inner diffusion of the titanium nitride layer. The behavior of samples with coating in HCl solution was almost the same in the sulphuric acid solution – samples demonstrated lower corrosion resistance. Qualitative evaluation of SEM data for the samples which were subjected to strong corrosion demonstrated that the electrochemical treatment did not induce essential deviations in samples. CONCLUSIONS The studies of element composition of TiN/Al2O3 coatings demonstrated that titanium, nitrogen, carbon, oxygen and aluminum are their basic composing elements. Melting of the surface by concentrated energy flows stimulated mass transfer processes. We observed a saturation of near surface regions by aluminum and oxygen ions and a simultaneous penetration of titanium and nitrogen ions in to the coating bulk. Electron beam annealing of the surface provided a uniform redistribution of titanium ions and a partial mel- ting of non-uniformities in the surface morpho- logy. Plasma detonation techniques can be succes- sfully utilized for deposition of a composite and hybrid coatings on metallic surfaces. A high cur- rent electron beam treatment enhanced the cor- rosion resistance of TiN/Al2O3 coatings. ACKNOWLEDGMENTS This work was funded by the NATO Linkage Grant PST 978157. a) b) c) Fig. 3. Optical photos of transversal cross-sections of TiN/Al2O3 coatings, which were melted by HCEB with the following power densities: a) – 180 Wt/cm2; b) – (760 + 1340) Wt/cm2; c) – (760 + 960) Wt/cm2. Sample Ecorr, (mV) icorr, (mA) ipass, (mA) Epass, (mV) Erep, (mV) TiN/Al2O3+HCEB –410 2.5 0.7 1022 1066 TiN/Al2O3 –330 11.9 –5.0 860 870 Steel –445 4.5 1.3 1022 1023 Table 2 Results of Electrochemical Studies M.K. KYLYSHKANOV ФІП ФИП PSE, 2007, т. 5, № 3-4, vol. 5, No. 3-4154 REFERENCES 1. Borisova A.L., Adeeva L.I., Sladkova V.N. Automatic welding. – 1997. – № 9. – P. 26-32. 2. Pogrebnjak A.D., Ponarjadov V.V., Kravchenko Yu.A., Rusimov Ch.M. Physical engineering of surface. – 2003. – Vol. 1, № 3-4. – P. 210-236. 3. Rykalin N.I., Uglov A.A., Anischenko L.M. High-temperature termophysical processes. – M.: Nauka, 1985. – 496 p. 4. Kikoin I.K. Tables of physical sizes. – M.: Аto- mizdat, 1985. – 1008 p. 5. Baranova L.V., Demina E.L. Metalographical etching of metals and alloys: the Directory. – M.: Metallurgija, 1986. – 256 p. МОДИФІКАЦІЯ ВЛАСТИВОСТЕЙ ГІБРИДНИХ ПОКРИТТІВ НА ОСНОВІ TiN/Al2O3 М.К. Килишканов Представлено нові експериментальні результати досліджень фазового складу гібридних покриттів TiN/Al2O3, осаджених на підкладинку з нержаві- ючої сталі типу AISI 321 комбінованим способом. Показано, що в процесі кристалізації порошку Al2O3 на підкладинці формуються зародки його γ-фази і метастабільних модифікацій. Вакуумно- дугове осадження нітриду титана на підшар Сr або порошку корунду дозволяє сформувати плів- ку, матриця якої складається з ГЦК-TiN з доміш- кою його тетрагональної модифікації ε-TiN. Знай- дено режими оплавлення поверхні низькоенерге- тичним потужнострумовим електронним пучком (НСЕП), що дозволяють активувати ряд полімор- фних перетворень типу γ-, β-, δ-, θ → α-Al2O3 і ε-TiN → TiN і сформувати покриття з α-фази корунду і кубічної модифікації TiN. МОДИФИКАЦИЯ СВОЙСТВ ГИБРИДНЫХ ПОКРЫТИЙ НА ОСНОВЕ TiN/Al2O3 М.К. Кылышканов Представлены новые экспериментальные резуль- таты исследований фазового состава гибридных покрытий TiN/Al2O3, осажденных на подложку из нержавеющей стали типа AISI 321 комбиниро- ванным способом. Показано, что в процессе крис- таллизации порошка Al2O3 на подложке форми- руются зародыши его γ-фазы и метастабильных модификаций. Вакуумно-дуговое осаждение ни- трида титана на подслой Сr или порошка корунда позволяет сформировать пленку, матрица которой состоит из ГЦК-TiN с примесью его тетрагональ- ной модификации ε-TiN. Найдены режимы опла- вления поверхности низкоэнергетическим силь- ноточным электронным пучком (НСЭП), позво- ляющие активировать ряд полиморфных превра- щений типа γ-, β-, δ-, θ → α-Al2O3 и ε-TiN → TiN и сформировать покрытие из α-фазы корунда и кубической модификации TiN. PROPERTIES OF HYBRID TiN/Al2O3 COATINGS USING ELECTRON BEAM MELTING