Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties

Two types of nano-microcomposite coatings Ti-Si-N/WC-Co-Cr and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ of 160 to 320 јm thickness were manufactured using two deposition technologies: cumulative-detonation and vacuum-arc deposition in HF discharge. The combined coatings restored worn areas of tools and dem...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Erdybaeva, N.K.
Формат: Стаття
Мова:English
Опубліковано: Науковий фізико-технологічний центр МОН та НАН України 2010
Назва видання:Физическая инженерия поверхности
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/98877
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and tTi-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties / N.K. Erdybaeva // Физическая инженерия поверхности. — 2010. — Т. 8, № 2. — С. 180–187. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-98877
record_format dspace
spelling irk-123456789-988772016-04-19T03:02:20Z Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties Erdybaeva, N.K. Two types of nano-microcomposite coatings Ti-Si-N/WC-Co-Cr and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ of 160 to 320 јm thickness were manufactured using two deposition technologies: cumulative-detonation and vacuum-arc deposition in HF discharge. The combined coatings restored worn areas of tools and demonstrated high corrosion and wear resistance, increased hardness, elastic modulus, and plasticity index. Отримано два види комбінованих нанокомпозитних покриттів (Ti-N-Si/WC-Co-Cr; TI-N-Si/ (Cr₃C₂ )₇₅-(NiCr)₂₅) товщиною 160 ё 320 мкм з використанням двох технологій осадження: кумулятивно-детонаційним з подальшим осадженням за допомогою вакуумно-дугового джерела у ВЧ розряді. Що дає можливість, за допомогою комбінованого покриття, відновлювати розмір зношених ділянок виробів із захистом їх від корозії, зносу, при цьому збільшити твердість, модуль пружності, індекс пластичності. Получено два вида комбинированных нанокомпозитных покрытий (Ti-N-Si/WC-Co-Cr; Ti-N-Si/ (Cr₃C₂ )₇₅-(NiCr)₂₅) толщиной 160 ÷ 320 мкм с использованием двух технологий осаждения: кумулятивно-детонационным с последующим осаждением с помощью вакуумно-дугового источника в ВЧ разряде. Что даёт возможность, при помощи, комбинированного покрытия восстанавливать размер изношенных участков изделий с защитой их от коррозии, износа, при этом увеличить твердость, модуль упругости, индекс пластичности. 2010 Article Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and tTi-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties / N.K. Erdybaeva // Физическая инженерия поверхности. — 2010. — Т. 8, № 2. — С. 180–187. — Бібліогр.: 18 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/98877 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Two types of nano-microcomposite coatings Ti-Si-N/WC-Co-Cr and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ of 160 to 320 јm thickness were manufactured using two deposition technologies: cumulative-detonation and vacuum-arc deposition in HF discharge. The combined coatings restored worn areas of tools and demonstrated high corrosion and wear resistance, increased hardness, elastic modulus, and plasticity index.
format Article
author Erdybaeva, N.K.
spellingShingle Erdybaeva, N.K.
Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties
Физическая инженерия поверхности
author_facet Erdybaeva, N.K.
author_sort Erdybaeva, N.K.
title Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties
title_short Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties
title_full Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties
title_fullStr Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties
title_full_unstemmed Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and Ti-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties
title_sort nano-microcomposite and combined coatings on ti-si-n/wc-co-cr/steel and ti-si-n/(cr₃c₂ )₇₅-(nicr)₂₅ base: their structure and properties
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/98877
citation_txt Nano-microcomposite and combined coatings on Ti-Si-N/WC-Co-Cr/steel and tTi-Si-N/(Cr₃C₂ )₇₅-(NiCr)₂₅ base: their structure and properties / N.K. Erdybaeva // Физическая инженерия поверхности. — 2010. — Т. 8, № 2. — С. 180–187. — Бібліогр.: 18 назв. — англ.
series Физическая инженерия поверхности
work_keys_str_mv AT erdybaevank nanomicrocompositeandcombinedcoatingsontisinwccocrsteelandtisincr3c275nicr25basetheirstructureandproperties
first_indexed 2025-07-07T07:11:43Z
last_indexed 2025-07-07T07:11:43Z
_version_ 1836971252592410624
fulltext 180  N.K. Erdybaeva, 2010 NANO-MICROCOMPOSITE AND COMBINED COATINGS ON Ti-Si-N/WC-Co-Cr/STEEL AND Ti-Si-N/(Cr3C2)75-(NiCr)25 BASE: THEIR STRUCTURE AND PROPERTIES N.K. Erdybaeva East-Kazahstan State University of Technology, Ust’-Kamenogorsk Kazahstan Received 21.06.2010 Two types of nano-microcomposite coatings Ti-Si-N/WC-Co-Cr and Ti-Si-N/(Cr3C2)75(NiCr)25 of 160 to 320 јm thickness were manufactured using two deposition technologies: cumulative-detonation and vacuum-arc deposition in HF discharge. The combined coatings restored worn areas of tools and demonstrated high corrosion and wear resistance, increased hardness, elastic modulus, and plasticity index. The composition of top coating changed from Ti = 60 at.%, N ≈ 30 at.%, and Si ≈ 5 at.% to N = 20 at.% and Ti – the rest. The first series of coatings indicated the following phases: (Ti, Si)N and TiN for thin coating and WC, W2C for thick one. The second series indicated (Cr3Ni2), pure Cr, and little amount of Ti19O17 (in transition region) for thick coating and (Ti, Si)N, TiN for thin one. For the first series, grain sizes reached 25nm, hardness was 38 GPa., elastic modulus E = (370 + 32) GPa, and plasticity index H/E = 0,11 – 0,12 For the second series, grain sizes were 15 nm, hardness essentially exceeded 42 GPa ± 4 GPa, elastic modulus E = (425 + 38) GPa, and plasticity index H/E = 0,12 – 0,13. Corrosion resistance in salt solution and acidic media increased and cylinder- surface friction wear decreased. Keywords: nanocomposite,cumulative-detonation, vacuum-arc deposition, corrosion resistance, elastic modulus Отримано два види комбінованих нанокомпозитних покриттів (Ti-N-Si/WC-Co-Cr; TI-N-Si/ (Cr3C2Ni)75-(NiCr)25) товщиною 160 ё 320 мкм з використанням двох технологій осадження: кумулятивно-детонаційним з подальшим осадженням за допомогою вакуумно-дугового джерела у ВЧ розряді. Що дає можливість, за допомогою комбінованого покриття, відновлювати розмір зношених ділянок виробів із захистом їх від корозії, зносу, при цьому збільшити твердість, модуль пружності, індекс пластичності. Склад верхнього покриття змінювали від Ti = 60%, N ≈30%, Si = 10% до Si = 5%; N = 20%, Ti = 75%. У першій серії покриттів виявлені фази (Ti, Si) і TiN в тонкому верхньому покритті і WC і W2C в товстому нижньому покритті. У другій серії, у верхньому покритті були отримані (Ti, Si) N і TiN, а в нижньому покритті Cr3Ni2, чистий Cr; невелика кількість Ti19O17 в перехідній області між тонким і товстим покриттям. Розмір зерен в першому варіанті тонкого покриття складав 25 нм, при твердості 35 ГПа, а в другому варіанті розмір зерен кристалітів складав 15 нм при твердості Н = 42 ± 3,6 ГПа. Показано, що корозійна стійкість в сольовому розчині і кислотному середовищах збільшується, при зменшенні зносу в результаті тертя циліндра по поверхні комбінованого покриття. Ключові слова: нанокомпозитні покриття, кумулятивна детонація, вакуумно-дугове осад- ження, модуль пружності, індекс пластичності, корозійна стійкість. Получено два вида комбинированных нанокомпозитных покрытий (Ti-N-Si/WC-Co-Cr; Ti-N-Si/ (Cr3C2Ni)75-(NiCr)25) толщиной 160 ÷ 320 мкм с использованием двух технологий осаждения: кумулятивно-детонационным с последующим осаждением с помощью вакуумно-дугового источника в ВЧ разряде. Что даёт возможность, при помощи, комбинированного покрытия восстанавливать размер изношенных участков изделий с защитой их от коррозии, износа, при этом увеличить твердость, модуль упругости, индекс пластичности. Состав верхнего покрытия изменяли от Ti = 60%, N ≈ 30%, Si = 10% до Si = 5%; N = 20%, Ti = 75%. В первой серии покрытий обнаружены фазы (Ti; Si) и TiN в тонком верхнем покрытии и WC и W2C в толстом нижнем покрытии. Во второй серии, в верхнем покрытии были получены (Ti, Si)N и TiN, а в нижнем покрытии Cr3Ni2, чистый Cr; небольшое количество Ti19O17 в переходной области между тонким и толстым покрытием. Размер, зерен в первом варианте тонкого покрытия, составлял 25 нм, при твёрдости 35 ГПа, а во втором варианте размер зёрен кристаллитов составлял 15 нм при твёрдости Н = 42 ± 3,6 ГПа. Показано, что коррозионная стойкость в солевом растворе и кислотной средах увеличивается при уменьшении износа в результате трения цилиндра по поверхности комбинированного покрытия. Ключевые слова: нанокомпозитные покрытия кумулятивная детонация, вакуумно-дуговое осаждение, модуль упругости, индекс пластичности, коррозионная стойкость. ФІП ФИП PSE, 2010, т. 8, № 2, vol. 8, No. 2 181 N.K. ERDYBAEVA INTRODUCTION Nanocomposite materials as a class of nanoma- terials is characterized by a heterogeneous struc- ture, which was formed by practically non-inter- acting phases with grain dimensions 5 to 35 nm [1 – 3]. As a rule, components of such structures are amorphous matrix and inclusions of nano- crystalline phases. These amorphous components agree in the best way with nanocrystalline surfa- ces providing good adhesion and essentially in- creasing hardness. Small grain dimensions of the second phase in combination with good strength of intergrain boundaries provide high mechanical properties of such composition materials. Today, nanomaterials are divided into three classes according to their hardness values: hard nanocomposites of ≥ 20 to 40 GPa hardness, superhard of 40 to 80 GPa, and ultrahard of ≥ 80 GPa [3 – 4]. In addition to protecting fun- ctions, chemical and machine building industries need restoration of initial tool dimensions for those tools, which already are functioning in in- dustry. For these purposes, tools are coated with thick coatings, the physical and mechanical pro- perties of which are higher than those of a basic material. Usually, alloys (powders) Ni-Cr-Mo [5], hard alloys WC-Co-Cr [6, 8] and Cr3C2-Ni, and oxide ceramics Al2O3, Al2O3-Cr2O3 [5, 7] are used for such coatings. In such a way, a combination two layers, for example a thick layer of WC-Co-Cr hard alloy of 100 µm, which was formed using cumulative or detonation deposition, and Ti-Si-N thin upper layer (units of a micron) with enhanced physical- mechanical characteristics, which was formed by subsequent condensation, was able to provide higher protecting functions and restore worn surface regions. The aim of this work was manufacturing of Ti-Si-N-, Ti-Si-N/WC-Co-Cr- and Ti-Si-N/ (Cr3C2)75-(Ni-Cr)25– based coatings and inves- tigation of their physical and mechanical properties. EXPERIMENTAL DETAILS Polished samples of St. 45 (0.45%C, Fe the rest) of 4 mm and 20 mm diameter were coated using vacuum-arc source with high-frequency dischar- ge. Ti alloyed sintered cathode containing 5 to 10 wt.% of Si was deposited using the Bulat 3T-device functioning under 5⋅10–5 Pa vacuum and 100 A cathode current. The sputtering was carried out using two regimes: the standard vacu- um-arc method, and HF-regime. A bias potential was applied to the substrate from a HF generator, which produced impulses of convergent oscil- lations with ≤ 1 MHz frequency, every impulse duration being 60 µs, their repetition frequency – about 10 kHz. Due to HF diode effect the value of negative auto bias potential occurring in the substrate amounted to 2 to 3 kV at the beginning of impulse (after start of a discharger operation). Coatings of 2 to 3.5 µm thickness were deposited to steel substrates of 20 and 30 mm diameter, and 3 to 5 mm thickness without additional sub- strate heating. A molecular nitrogen was emp- loyed as a reactive gas The first series of rounded steel 3 (0.3 wt.%C) samples of 20 mm diameter and 4 to 5mm thickness was deposited using cumulative-detonation device CDS-1 of the fol- lowing parameters: 65 mm distance to a nozzle cut, 14 mm/s displacement velocity, 5 runs, 12Hz pulse repetition frequency (for WC-Co-Cr). After the deposition, the 160 to 320јm thick coating was melted by a plasma jet (without powder) using eroding W electrode. A melted layer thickness was 45 to 60 µm. Then, Ti-Si-N thin coating of about 3 µm was deposited over the thick one using the same device Bulat 3T (the method was described above). For the second series of samples, powder mixture (Cr3C2)75-(NiCr)25 was used, with pow- der size of 37.8 µm. The distance to a nozzle was 70 mm, displacement velocity – 4 mm/sec, 4 passed, pulse repetition frequency was 12Hz, capacity was C = 200 µF, and capacity battery was 3.2 kV. For Bulat 3T, conditions for thin coating de- position remained the same. For element analysis, we applied the follo- wing methods: Rutherford back-scattering of 4He+ of 1.76MeV energy (RBS), scanning elect- ron microscopy (SEM) with EDS (REMMA- 103M, Selmi, Ukraine), X-ray diffraction (DRON-3 and Advantage 8, USA). Hardness and elastic modulus were measured using nanoindentation device Nanoindenter II, MTS System Corporation, Oak Ridge TN (USA) with Berkovich pyramid. Elastic modulus was determined using “load-unload” curves, accor- ding to Oliver-Pharr method [14]. Scanning tun- ФІП ФИП PSE, 2010, т. 8, № 2, vol. 8, No. 2 183 Without external magnetic field this zone is: 42 10 e C n δ ≈ π ⋅ , (4) where c – is light velocity; n – is plasma density. Under action of positive potential ions gained energy for directed motion and bombarded the antenna (under closed input mode) or an internal surface of vacuum chamber and its inside content. This bombardment cleaned the antenna surface, chamber, and tools inside. Ion energy may be controlled by drawing a fraction of charges aside of the antennae by switching higher resistance. In this case, material sputtering occurred. Maximum voltage amplitude at the beginning of HF impulse was determined by energy value of concrete ions under action of this electric field and by corresponding sputtering efficiency of coated material. The technological device [7, 14] was constructed on the basis of vacuum chamber (7). Grounded metallic walls of vacuum chamber served simultaneously like an anode of vacuum- arc discharge system. Negative potential from an arc-discharge feeding source was applied to a cathode (4), which was fabricated from a material desired for further coating synthesis. A working gas was fed through a gas line (5) using a leak system (1). For additional chemical activation, molecular gases were fed to the vacuum chamber. They passed through a cylindrical quartz discharge chamber (11), in which a generator (12) produced periodically repeated spark discharges. Tools were arranged on a movable table (8). HF voltage was applied to a substrate (8) through the matching device (9) from the HF generator. In such a way, working with decreasing voltage (fig. 2b) during every impulse, one can join two main technological operations of coating deposition (clearing and deposition), which earlier were performed separately using devices for vacuum-arc deposition. This allowed one to choose better conditions for coating deposition and saved time. Depositing Al2O3 and TiN coatings, it was demonstrated that changing HF voltage potential applied to substrate, one could affect coating phase composition [14, 15]. Fig. 3 presents an image of nano-microcom- posite surface for combined Ti-Si-N/WC-Co-Cr coating. Fig. 4a presents RBS data for the thick WC-Co-Cr coating without Ti-Si-N thin one. A thin coating was formed using vacuum-arc source and followed the coating surface relief formed by plasma-detonation. Its average rough- ness varies from 14 to 22 µm (after melting and coating deposition using vacuum-arc source). An image of X-ray energy dispersion spectrum is presented below. It indicates the following ele- Fig. 2b. A scheme of a technological system for coating synthesis operating on the basis of a vacuum-arc discharge: 1 is a device for gas-feeding; 2 – sources for arc-discharge feeding; 3 – measuring probe; 4 – a cathode; 5 – a gas li- ne for gas-feeding; 6 – a double movable probe; 7 – a vacuum chamber; 8 – a substrate; 9 – a device to match a HF-generator; 10 – the HF-generator; 11 – a quartz tube for dissociation of working gas molecules; 12 – power source. Fig. 3. Images of surface regions for nano-microcompo- site combined coating Ti-Si-N/(Cr3C2)75-(NiCr)25. Fig. 4a. Energy spectra of Rutherford ion backscattering (RBS) for thick coating WC-Co-Cr. N.K. ERDYBAEVA 184 ment concentrations in the thin coating: N ∼ 7.0 to 7.52 vol.%; Si ∼ 0.7vol.%; Ti ∼ 76.70 to 81 vol.%. For the thick coating we found Fe ∼ 0.7 vol.%, and traces of Ni and Cr. Results for combined coating are presented below, fig.4b. Element distribution, which was calculated according to a standard program [5], indicated N = 30 at.%; Si ≈ 5 to 6 at.%; Ti ≈ 63 to 64 at.%. Spectrum of thick coating did not allow us to evaluate element concentration due to high sur- face roughness of the coating formed by plas- ma-detonation method. X-ray analysis of a combined nanocomposite coating is shown in fig. 5. It indicates the following phases: (Ti, Si)N; TiN – for thin coating, and WC; W2C – for thick one. Special samples were prepared for hardness measurements. Their surfaces were grinded and then polished. After grinding, thickness of WC- Co-Cr thick coating decreased to 80 – 90 µm. Thin Ti-Si-N film of about 3 µm was condensed to the grinded surface. As a result, we found that hardness of different regions essentially varied within 29 ± 4GPa to 32 ± 6GPa. Probably, it is related to non-uniformity of plasma-detonation coating surface, which hardness varied up 11.5 to 17.3 GPa. These hardness values remained after condensation of Ti-Si-N thin coating Elastic modulus also features non-ordinary behavior. Hardness of the thin coating, which was deposited to a polished steel St.45( 0.45%C) surface had maximum value of 48GPa, and its average value Hav was 45 GPa. Variation of hardness values was lower than that found in a combined coating. Fig. 6 shows dependences of loading- unloading for various indentation depths. These dependences and calculations, which were performed according to Oliver-Pharr technique [14], indicated that hardness of Ti-Si- N coatings deposited to thick (Cr3C2)75-(NiCr)25 was 37.0 ± 4.0 GPa under E = 483 GPa. Fig. 7 shows fragments of diffraction patterns for nano-microcomposite combined coating Ti-Si-N/(Cr3C2)75-(Ni-Cr)25. Fig. 4b. Energy spectra of Rutherford ion backscattering (RBS) for top thin coating Ti-Si-N/WC-Co-Cr. Fig. 5. Diffraction patterns fragments obtained for sur- face region of nano-microcomposite combined coating Ti-Si-N/WC-Co-Cr/steel substrate. Fig. 6. Loading-unloading curves for Ti-Si-N/WC-Co-Cr coating under various Berkovich indentation depths. Fig. 7. Diffraction patterns for combined nano-micro- composite coating Ti-Si-N/(Cr3C2)75-(NiCr)25. NANO-MICROCOMPOSITE AND COMBINED COATINGS ON Ti-Si-N/WC-Co-Cr/STEEL AND Ti-Si-N/(Cr3C2)75-(NiCr)25 BASE: THEIR ... ФІП ФИП PSE, 2010, т. 8, № 2, vol. 8, No. 2ФІП ФИП PSE, 2010, т. 8, № 2, vol. 8, No. 2 ФІП ФИП PSE, 2010, т. 8, № 2, vol. 8, No. 2 185 These diffraction patterns and calculations of coating structure parameters are presented in tabl. 1. In the coating, basic phases are Cr3Ni2 for the bottom thick coating and (Ti, Si)N and TiN for the thin top coating. Diffraction patterns were taken under cobalt emission. Additionally, we found phases of pure Cr and low concentration of titanium oxide (Ti9O17) at interphase boundary between thin-thick coatings. Peaks of Ti-Si-N and TiN coincided because of low Si content. (Ti, Si)N is solid solution based on TiN (Si penetration). The phases are well distinguished at 72 to 73° angles. Fig. 8 shows regions of thick bottom (Cr3C)75- (NiCr)25 coating and intensity distribution of X-ray emission for basic elements. In this coating, content of basic elements is the following: nickel and chromium – 36 wt.% and 64 wt.%, respectively. Also, we found car- bon, oxygen, and silicon.[17, 18] Transversal cross-sections did not allow us to distinguish thin upper coating due to its low thickness. We found regions for pure nickel and chromium. Nickel matrix (a white region) indicated high amount of chromium inclusions with various grain dimensions: small grains of < 1 µm, average – of 4 to 5 µm, and big – of 15 to 20 µm. The white region is reach in Ni (to 90at.%). A grey region is reach in Cr (to 92at.%). In these experiments. The inset of fig. 8 shows higher resolution element composition distribution in Ti-Si-N/(Cr3C2)75-(NiCr)25 nano-microcomposite Table 1 Calculation results for coating parameters and structures № Angle Area Intensity Half-width % max Phase hkl 1 28,437 8,511 37 0,4512 3,6416 100,00 Ti9O17 106 004 2 30,648 3,083 13 0,4518 3,3845 36,84 Ti9O17 0210 123 3 42,771 10,885 20 1,0490 2,4530 65,79 Ti-Si-N+TiN 111 111 4 49,332 13,862 13 1,9890 2,1413 34,21 Cr3Ni2 Ti-Si-N 321 200 5 49,993 17,418 15 2,2322 2,1168 34,47 TiN Ti9O17 200 1223 110 6 50,533 6,528 12 1,0335 2,0956 44,74 Cr3Ni2 330 7 52,134 2,782 15 0,3553 2,0355 39,47 Cr3Ni2 Cr Ni 202 110 111 8 72,500 18,056 18 1,8950 1,5127 47,37 Ti9O17 Ti-Si-N 3130 220 9 73,040 11,106 13 1,5950 1,5030 52,63 TiN 220 Interplanar Fig. 8a. Regions of transversal cross-section for combined coatings (lines of element analysis are indicated) from SEM and EDS analyses. Fig. 8b. Element distribution over depth of combined coa- ting Ti-Si-N/(Cr3C2)75-(NiCr)25 for the regions indicated in fig.8a. N.K. ERDYBAEVA 186 coating. In a thin nano-composite layer, one can see high Ti concentration, presence of Si, and high enough nitrogen content exceeding 6.7 wt.%. Fig. 9 shows results of wear resistance tests, which were performed according to a scheme “cylinder-plane”. These results demonstrated the lowest friction wear for Ti-Si-N/(Cr3C2)75-(NiCr)25 system and the highest friction wear for substrate. Adhesion between thin Ti-Si-N coating and thick (Cr3C2)75-(NiCr)25 one was 1.75 times higher than between Ti-Si-N and WC-Co-Cr. In addition, adhesion between thick (Cr3C2)75- (NiCr)25 coating and steel (substrate) was 7.2 times higher and more than 12.5 times higher than between thick WC-Co-Cr coating and steel (substrate). Maximum adhesion value of about 292N/m was found in the case of Ti-Si-N ’! (Cr3C2)75-(NiCr)25. CONCLUSION Thick (> 100 јm) nanocomposite coatings of Ti- Si-N/WC-Co-Cr and Ti-Si-N/(Cr3C2)75(NiCr)25 compositions were formed and investigated. In the first series of samples, thin coatings contained (Ti, Si)N and TiN phases. Grain di- mensions were about 25 nm. Hardness reached 38 GPa. In the second series of samples, in thin coating grain dimensions were smaller – about 15 nm. Hardness reached 42 to 44 GPa. Phase compo- sition was the same – (Ti, Si)N and TiN. Si and N concentrations changed from 10 at.% to 5 at.% for Si and from 30 at.% to 20 at.% for N. Wear resistance increased essentially, which was demonstrated by cylinder-to-sample surface friction. Corrosion resistance and other mecha- nical characteristics also increased. ACKNOWLEDGEMENTS The work was supported by projects ISTCs K-1198 and NAS of Ukraine “Nanosystems, Nanocoatings, Nanomaterils”. The author acknowledge Drs.S.B.Kislitsyn, Yu.Zh.Tuleushev from Institute for Nuclear Physics, NNC, Almaty,Prof A.D.Pogrebnjak from Sumy State University,Sumy Institute for Surface Modification, Prof. F.F. Komarov from Belarus State University, Minsk for their help in RBS analysis and corrosion tests. REFERENCES 1. Pogrebnjak A.D., Shpak A.P., Azarenkov N.A., Beresnev V.M. Structures and Properties of Hard and Superhard Nanocomposite Coatings//Usp. Phys. – 2009. – Vol. 170, No. 1. – P. 35-64. 2. Musil J., Zeman P. Hard a-Si3N4/MeNx Nano- composite Coatings With High Thermal Stability and High Oxidation Resistance//Solid State Phe- nome. – 2007. – Vol. 127. – P. 31-37. 3. Zhang R.F., Argon A.S., Veprek S. Electronic Structure, Stability, and Mechanism of the Deco- hesion and Shear of Interfaces in Superhard Na- nocomposites and Heterostructures//Phys. Rev. – 2009. – Vol. B79. – P. 24542. 4. Veprek S., Veprek-Heijman M., Karvankova P., Prochazka J. Different approaches to superhard coatings and nanocomposites//Thin Solid Films. – 2005. – Vol. 476. – P. 1-25. 5. Musil J., Dohnal P., Zeman P. Physical Proper- ties and High-Temperature Oxidation Resistance of Sputtered Si3N4/MoNx Nanocomposite Coa- tings//J. Vac. Sci. Technology. – 2005. – Vol. 23, № 4. – P. 1568-1574. 6. Uglov V., Anishcik V., Zlotski S., Abadias G., Dub S.N. Structural and Mechanical Stability Upon Annealing of Arc-Deposited Ti-Zr-N Coa- tings//Surf. & Coat. Tech. 2008. – Vol. 202. – P. 2394-2398. 7. Azarenkov N.A., Beresnev V.M., Pogrebnjak A.D. Structure and Properties of Coatings and Modified Layers of Materials. – Kharkov: KhNU, 2007. – 565 p. 8. Nanostructure Coating/Eds. A.Gavaleiro, J.T. De Hosson.– Berlin: Springer-Verlag, 2006.– 340 p. Fig. 9. Histograms of dependences of wear rates for samp- les, which were fubricated according to scheme cylin- der-plane. NANO-MICROCOMPOSITE AND COMBINED COATINGS ON Ti-Si-N/WC-Co-Cr/STEEL AND Ti-Si-N/(Cr3C2)75-(NiCr)25 BASE: THEIR ... ФІП ФИП PSE, 2010, т. 8, № 2, vol. 8, No. 2 ФІП ФИП PSE, 2010, т. 8, № 2, vol. 8, No. 2 187 9. Musil J. Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reac- tive Magnetron Sputtering. Ch. 10/Eds. A. Cava- leiro, J.Th.M. De Hosson. – Kluwer Academic/ Plenum Publishers. (N.-Y. USA), 2005. 10. Vishniakov Ja.D. Sovremennye Metody Issledo- vaniia Struktury Deformirovannykh Kristallov.– M.: Metallurgija, 1975. – 480 p. 11. Beresnev V.M., Pogrebnjak A.D., Kirik G.V., Edyrbaeva N.K., Ponaryadov V.V. Structure, and Properties and Fabrication of the Solid Nano- crystalline Coating in Several Ways//Progress in Physics of Metals. – 2007. – Vol. 8., No. 3. – P. 171-246. 12. Pogrebnjak A., Danilionok M., Uglov V., Erdy- baeva N., Kirik G., Dub S., Rusakov V., Shypy- lenko A., Zukovski P., Tuleushev Y. Nanocom- posite Protective Coatings Based on Ti-N-Cr/Ni- Cr-B-Si-Fe, Their Structure and properties//Va- cuum. – 2009. – Vol. 83. – P. S235-S239. 13. Musil J. Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reac- tive Magnetron Sputtering: invited Chapter 10. – Kluwer Academic/Plenum Pullishers, New York, 2007. 14. Kadyrzhanov K., Komarov F., Pogrebnjak A., et al. Ion-Beam Plasma Modification of Materials. – M.: MSU, 2005. – 640 p. 15. Beresnev V.M., Tolok V.T., Shvets O.M., Furso- va E.V., Chernyshev, Malikov L.V. Micro-nano- layers coatings fabricated by vacuum-arc source with discharge//PSE.– 2006.–Vol. 4.– P. 104-109. 16. Pogrebnjak A.D., Shpak A.P., Beresnev V.M. New Nanotechniques Structure and Properties of Protective Composite Coatings and Modified Surface Prior and After Plasma High Energy Jets Treatment. Chapter 2/Eds. A. Malik, R.J. Ra- wat. – Nova Science Publ.New-York, 2009. – P. 21-115. 17. Pogrebnjak A.D. Metastable States and Struc- tural Phase Changes in Metals andAlloys Expo- sed to High Power Pulsed Ion Beams//Phys. Stat. Sol. – 1990. – Vol. A117. – P. 17-49. 18. Pogrebnjak A.D., Remnev G.E. Plotnikov S.V. High-Power Ion-Beam-Induced and Mixing in Deposited Structures//Mater. Sci. and Engineer. – 1989. – Vol. A115. – P. 175-179. N.K. ERDYBAEVA