Langmuir probe in ion-beam plasma: theory VS experiment

The paper is devoted to experimental verification of theoretical model of Langmuir probe operation in ion-beam plasma. The mathematical model of single cylindrical Langmuir probe describes dependence of ion current gathered by the probe on the basic parameters of ion-beam plasma. The model covers...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Dudin, S.V.
Формат: Стаття
Мова:English
Опубліковано: Науковий фізико-технологічний центр МОН та НАН України 2012
Назва видання:Физическая инженерия поверхности
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/98971
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Langmuir probe in ion-beam plasma: theory VS experiment / S.V. Dudin // Физическая инженерия поверхности. — 2012. — Т. 10, № 3. — С. 273–280. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-98971
record_format dspace
spelling irk-123456789-989712016-04-20T03:02:40Z Langmuir probe in ion-beam plasma: theory VS experiment Dudin, S.V. The paper is devoted to experimental verification of theoretical model of Langmuir probe operation in ion-beam plasma. The mathematical model of single cylindrical Langmuir probe describes dependence of ion current gathered by the probe on the basic parameters of ion-beam plasma. The model covers wide parameters range of the ion-beam plasma, particularly the whole range typical for technological ion-beam systems. The comparison of the results of numerical calculations with the experimental measurement results confirms high reliability of the model in wide range of parameters excluding the case of very low ion beam energy. Статья посвящена экспериментальной проверке теоретической модели, описывающей работу зонда Ленгмюра ионно-пучковой плазме. Математическая модель одиночного цилиндрического зонда Ленгмюра описывает зависимость ионного тока на зонд от основных параметров ионнопучковой плазмы. Модель охватывает широкий спектр параметров ионно-пучковой плазмы, в частности, параметры, типичные для технологических ионно-лучевых систем. Сравнение результатов численных расчетов с экспериментальными результатами подтверждает высокую достоверность этой модели в широком диапазоне параметров за исключением случая очень низкой энергии пучка ионов. Статтю присвячено експериментальній перевірці теоретичної моделі роботи зонда Ленгмюра в іонно-пучковій плазмі. Математичнамодель одиночного циліндричного зондаЛенгмюра описує залежність іонного струму на зонд від основних параметрів іонно-пучкової плазми. Модель охоплює широкий спектр параметрів іонно-пучкової плазми, зокрема, параметри, що є типовими для технологічних іонно-променевих систем. Порівняння результатів чисельних розрахунків з експериментальними результатами підтверджує високу достовірність цієї моделі в широкому діапазоні параметрів за винятком випадку дуже низької енергії пучка іонів. 2012 Article Langmuir probe in ion-beam plasma: theory VS experiment / S.V. Dudin // Физическая инженерия поверхности. — 2012. — Т. 10, № 3. — С. 273–280. — Бібліогр.: 15 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/98971 533.9.082.76 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper is devoted to experimental verification of theoretical model of Langmuir probe operation in ion-beam plasma. The mathematical model of single cylindrical Langmuir probe describes dependence of ion current gathered by the probe on the basic parameters of ion-beam plasma. The model covers wide parameters range of the ion-beam plasma, particularly the whole range typical for technological ion-beam systems. The comparison of the results of numerical calculations with the experimental measurement results confirms high reliability of the model in wide range of parameters excluding the case of very low ion beam energy.
format Article
author Dudin, S.V.
spellingShingle Dudin, S.V.
Langmuir probe in ion-beam plasma: theory VS experiment
Физическая инженерия поверхности
author_facet Dudin, S.V.
author_sort Dudin, S.V.
title Langmuir probe in ion-beam plasma: theory VS experiment
title_short Langmuir probe in ion-beam plasma: theory VS experiment
title_full Langmuir probe in ion-beam plasma: theory VS experiment
title_fullStr Langmuir probe in ion-beam plasma: theory VS experiment
title_full_unstemmed Langmuir probe in ion-beam plasma: theory VS experiment
title_sort langmuir probe in ion-beam plasma: theory vs experiment
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/98971
citation_txt Langmuir probe in ion-beam plasma: theory VS experiment / S.V. Dudin // Физическая инженерия поверхности. — 2012. — Т. 10, № 3. — С. 273–280. — Бібліогр.: 15 назв. — англ.
series Физическая инженерия поверхности
work_keys_str_mv AT dudinsv langmuirprobeinionbeamplasmatheoryvsexperiment
first_indexed 2025-07-07T07:17:12Z
last_indexed 2025-07-07T07:17:12Z
_version_ 1836971598857371648
fulltext 273 INTRODUCTION It is known, that in transport space of intense ion beam the ion-beam plasma (IBP) appears as a re- sult of the beam space charge neutralization by elec- trons [1, 2]. The interest to research of IBP is stim- ulated by wide extension of different ion-beam tech- nologies [3 – 6], where the charged, excited, chem- ically active particles and electromagnetic radiation hit the processed surface immediately from the ion- beam plasma. One of the most attractive methods for measur- ing of the ion-beam plasma parameters is the Lang- muir probe method, which permit to measure local- ly practically all essential plasma parameters in wide range of their change. However, the probe mea- surements in IBP have specific peculiarities connect- ed with complex composition of the plasma, partic- ularly with the presence in the plasma of two ion groups with dramatically different energies: the beam ions (usually hundreds-thousands eV) and cold plas-ma ions with temperature much less than 1 eV. Naturally, the response of these two ion groups to the electric field around the probe is different. Slow ion behavior is similar to common plasma, the ions tend to form positive space charge around negati- vely biased probe while the fast ions don’t “feel” the probe voltage and provide constant background of positive space charge with no dependence on the probe voltage. A mathematical model describing dependence of ion current gathered by single cylindrical Langmuir probe on the basic parameters of ion-beam plasma has been presented in [7]. However, there was no comparison of the simulation results with experiment. The aim of the present work is experimental verifi- cation of the theoretical model. UDC 533.9.082.76 LANGMUIR PROBE IN ION-BEAM PLASMA: THEORY VS EXPERIMENT S.V. Dudin V.N. Karazin Kharkiv National University Ukraine Received 14.09.2012 The paper is devoted to experimental verification of theoretical model of Langmuir probe operation in ion-beam plasma. The mathematical model of single cylindrical Langmuir probe describes depen- dence of ion current gathered by the probe on the basic parameters of ion-beam plasma. The model covers wide parameters range of the ion-beam plasma, particularly the whole range typical for tech- nological ion-beam systems. The comparison of the results of numerical calculations with the exper- imental measurement results confirms high reliability of the model in wide range of parameters ex- cluding the case of very low ion beam energy. Keywords: Langmuir probe, ion-beam plasma, plasma simulation. Статья посвящена экспериментальной проверке теоретической модели, описывающей работу зонда Ленгмюра ионно-пучковой плазме. Математическая модель одиночного цилиндрического зонда Ленгмюра описывает зависимость ионного тока на зонд от основных параметров ионно- пучковой плазмы. Модель охватывает широкий спектр параметров ионно-пучковой плазмы, в частности, параметры, типичные для технологических ионно-лучевых систем. Сравнение результатов численных расчетов с экспериментальными результатами подтверждает высокую достоверность этой модели в широком диапазоне параметров за исключением случая очень низкой энергии пучка ионов. Ключевые слова: зонд Ленгмюра, ионно-пучковая плазма, моделирование плазмы. Статтю присвячено експериментальній перевірці теоретичної моделі роботи зонда Ленгмюра в іонно-пучковій плазмі. Математична модель одиночного циліндричного зонда Ленгмюра описує залежність іонного струму на зонд від основних параметрів іонно-пучкової плазми. Модель охоплює широкий спектр параметрів іонно-пучкової плазми, зокрема, параметри, що є типовими для технологічних іонно-променевих систем. Порівняння результатів чисельних розрахунків з експериментальними результатами підтверджує високу достовірність цієї моделі в широкому діапазоні параметрів за винятком випадку дуже низької енергії пучка іонів. Ключові слова: зонд Ленгмюра, іонно-пучкова плазма, моделювання плазми.  S.V. Dudin, 2012 ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3274 MODEL DESCRIPTION Let us review first the mathematical model, which describes the dependence of ion current gathered by a single cylindrical Langmuir probe on the basic parameters of ion-beam plasma, such as probe po- tential, cold and beam ion densities, relation between ion and electron temperatures. The model is built for collisionless case, because transport of ion-beams takes place at low pressures. A current of cold ions on infinite single cylindrical Langmuir probe is considered. It is assumed that the ion temperature Ti is much less than electrons temperature Te and electron distribution is Max- wellian. The following dimensionless variables and parameters are used in our model: e e kT ϕψ = , De rx = λ , 0 i i e n n η = , 0 b b e n n η = , 0 e e e n n η = , p p De r x = λ , p p e e kT ϕ ψ = , 0 22 i e p i i Ii kTr Len m = π , i e T T τ = . Here ϕ – potential in point with radius r; ni, nb, ne – densities of cold ions, beam ions and electrons, re- spectively; ne0, ni0 – densities of electrons and cold ions at infinity, rp, ϕp, L – radius, potential and length of probe; Ii – current of cold ions to the probe; mi – ion mass; e – electron charge; k – Boltzmann’s con- stant; 2 04 e De e kT n e λ = π – Debye length. The analogous dimensionless parameters are used in the most of theoretical works dealing with computation of ion current to Langmuir probe [8 − 10], but we have introduced additional parame- ter: “portion of ion beam in plasma”: 0 0 0 i i e n n η = . The value of this parameter changes from 0 (case of “pure” ion-beam plasma without cold ions), to 1 (case of “classic” plasma without beam). Poisson’s equation in dimensionless variables can thus be written as follows: ( ) 2 0 02 1 1exp( ) 1p i i xd d i dx x dx x  ψ ψ+ = ψ − η − −η  −ψ  , (1) where the first term of right part is the dimension- less density of electrons, the second is the density of slow ions, the third is the density of beam of ions, which is constant. For determination of initial conditions let us ta- ke a region in which the following conditions are satisfied: kTe >> |eϕ| >> kTi, ne ≈ ni + nb. In this region the current density of cold ions can be de- fined as 2 iIj rL = π , and on the other hand, the den- sity of cold ions is determined by potential ϕ: ( ) 0 2 i i e j en m −ϕ = . From this equation an analytic expression for radial distribution of potential can be found: 2 2 2( ) pi x x x − ψ = . The initial conditions for equation (1) are set on the cylindrical surface with dimensionless radius x0, which is in the region defined above. The potential of this surface we define as ψ0 = −bτ where b > 1 (for example, b = 5). Radius x0 and derivative of potential at x = x0 can thus be written as follows: 0 1 px ix b = τ , 0 0 2d b dx x ψ τ  =    . We solved Poisson’s equation using the fourth order Runge-Kutta method. SIMULATION RESULTS As a result of numerical computations we have got a data array of cold ion current dependence on four parameters i(ψp, xp, ηi0, τ). The values of dimen- sionless potential were changed from 0 to 50, the dimensionless probe radius xp from 0.25 to 100 that corresponds to the change of plasma density from 108 to 1013 сm−3. Temperatures ratio was 0.01. A set of the calculation results is presented graphically in fig.1. For the limiting case of the large probe (xp = 100 in the fig. 1) we can make a conclusion, that for any values of parameter ηi0, as in the case of “classic” plasma, saturation of ion current takes place. The saturation current density can be presented by for- mula, which is analogous to the well known Bohm’s formula for plasma without ion beam: LANGMUIR PROBE IN ION-BEAM PLASMA: THEORY VS EXPERIMENT ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3276 fig. 1. EXPERIMENTAL TECHNIQUES In order to provide the experimental verification of the described model in wide range of parameters the experimental investigation was conducted using two different ion sources. The first experimental setup (Device 1, see fig.4) with a multichannel Hall type ion source “Radical- M” generating ion beam with diameter of about 50 mm, mean ion energy about 500 eV and current 1 − 50 mA. The stainless steel transport chamber with length of 17 cm has appro-ximately rectangular cross-section. The argon pressure in the chamber was 10−4 – 10−3 Torr. The second experimental setup (Device 2, see fig. 5) is based on a single-grid ICP ion source with RF biasing [11]. The plasma is generated by 2-turns shielded inductive coil placed inside the metallic vac- uum chamber with 250 mm inner diameter and 80 mm length. RF power (13.56 MHz) in the range 0 − 1000W is applied to the inductor through a match- ing box. For the control of the plasma potential the discharge chamber was designed as a potential elec- trode insulated from the grounded flange holding the 0.12 mm thick stainless steel extraction grid with Fig. 3. Radial distribution of densities of electrons ηe and ions η i in comparison with potential distribution at several η i0 values. ηe − thin line, η i − bold line. Fig. 4. Scheme of experimental Device 1. 1 – ion source, 2 – multigrid energy analyzer, 3 – flat probe with guard ring, 4 – target, 5 – Langmuir probe, 6 – transport chamber. Fig. 5. Scheme of experimental Device 2. LANGMUIR PROBE IN ION-BEAM PLASMA: THEORY VS EXPERIMENT 277 holes of 0.24 mm diameter. The working area of the grid is 450 cm2 and optical transparency is 0.4. RF (13.56 MHz) bias voltage required for the ion acceleration is applied between the grounded grid and the source chamber. The RF bias is sup- plied through a capacitor allowing DC positive self- bias generation on the electrode which is greater then the grid by area. The DC self-bias potential of the electrode was the measured value and is used below as a main parameter governing the ion ener- gy and emission characteristics of the source. All potentials in this work are measured versus the grounded beam transport chamber. In the described experiments the source was at- tached to the 400 mm diameter metallic ion beam transport chamber pumped by a turbo pump with 700 l/s throughput. The residual pressure in the sys- tem was better then 10−5 Torr. The 300 mm diame- ter target accepting the ion beam was placed at 100 mm distance from the source grid. The target was equipped with the 20 mm diameter single-grid re- tarding-field energy analyzer analogous to the de- vice used in previous works [11 − 13]. The EA grid holes diameter is 0.1 mm, thickness is 0.12 mm and optical transparency is 0.2. Also, a linear array of plane probes biased at −25 V was mounted on the target to measure radial ion current density profile. In order to measure ion current density from the ICP to the IOS an additional planar probe was mounted on the extraction grid at the source axis and also was biased at −25 V. For measurement of the plasma parameters in both devices Langmuir probes (0.1 mm diame- ter, 5 mm length) were inserted in the IBP region. The probe measurements were conducted using the PlasmaMeter version 5.3 probe system [14, 15] designed in the V.N. Karazin Kharkiv National University. The current measurement unit and volt- age amplifier of the PlasmaMeter are optically iso- lated from the digital controller connected to ground. PlasmaMeter communicates with the controlling computer via a USB interface. The PlasmaMeter can measure probe currents up to 300 mА at probe voltages from −80 to 80 V. To avoid the probe melting, over-current protection is provided that automatically decreases the probe voltage so that the current drawn through the probe tip never ex- ceeds 0.5 A. Both the ADC and DAC are 16 bits. This in combination with the high linearity of the amplifiers (better than 0.03%), a low internal noise, and the advanced differentiation procedure used allows measurement of the EEPF to 3 orders of magnitude. The sensitivity is usually limited by plas- ma noise rather than hardware measurement limita- tions. EXPERIMENTAL RESULTS AND DISCUSSION As it was mentioned in Introduction, the main focus of the present research is to find out the influence of parameters of two groups of ions (namely the fast beam ions and slow plasma ions) on the Langmuir probe trace. The measured current-voltage char- acteristics of Langmuir probe are shown in fig. 6 for the Device 1 and in fig. 7 for the Device 2. The curves in the fig. 6 was measured at the same parameters, but at different probe positions includ- ing the positions at the beam axis, at the beam edge and outside the beam, that allows to research the dependence of shape of the probe characteristics on the slow/fast ions ratio with constant ion beam energy. Otherwise, all the probe curves presented in the fig. 7 are measured at the same probe position (cen- ter of the beam transport chamber), but with differ- ent ion beam energies in order to reveal the fast ion energy impact on the probe trace. It should be not- ed that in all the cases the fast ion current to the probe calculated using the known ion beam current density and the probe cross-section area was sig- nificantly less then the slow ion current to the probe, so in the comparison of the theoretic and experi- Fig. 6. Langmuir probe characteristics measured in the Device 1. Different curves was measured at different radial prove distances r from the ion beam axis. S.V. DUDIN ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3 ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3278 mental results below under the ion current to the probe we understand just the cold ion current. The ion beam energy and current density was measured using the retarding field energy analyzer and the flat probes. Some of the measured ion en- ergy distribution functions are presented in fig. 8. Fast and slow ion peaks are clearly visible. The fast ion peak at high acceleration voltages can be rela- tively broad, so mean ion beam energy was used in further analysis. In order to verify reliability of the mathematical model described in the first part of the present pa- per the direct comparison of the calculated and ex- perimentally measured probe characteristics was done. Such comparison for the results from the Devices 1 and 2 is illustrated by fig. 9 and 10, re- Fig. 7. Langmuir probe characteristics measured in the Device 2. Different curves was measured with different acceleration voltages цacc. Fig. 8. Measured ion energy distribution functions. Fig. 9. Comparison of calculated and experimentally measured probe characteristics for Devices 1. Radial probe positions r are the same as in fig.6. LANGMUIR PROBE IN ION-BEAM PLASMA: THEORY VS EXPERIMENT 279 spectively. The calculated dimensionless ion currents were transformed to dimensional form, then elec- tron current calculated using the measured electron temperature was added allowing to obtain complete probe current. The fast ion density was calculated from the measured ion beam energy and current density, slow ion and electron densities was calcu- lated from a guess value of the parameter ηi0. Next, using the successive approximation method the right value of ηi0 was searched for the best coincidence of the theoretic and experimental data. One can see good agreement of the theory and the experiment for the whole set of parameters ex- cluding the case of very low energy of the ion beam. Presumably it can be explained by the fast ion mo- tion distortion by the electric field around the probe which isn’t taken into account by the described model. This looks natural for the lowest ion ener- gies if we compare the probe voltage (up to 50 V in the fig. 10) to the 25 eV ion energy for the last graph in the fig. 10. Thus, we can conclude that the area of applicability of the developed model is limited from the side of low ion beam energy. Thus, in the present work the experimental ver- ification of the theoretical model of Langmuir probe operation in ion-beam plasma has been carried out. The mathematical model of single cylindrical Langmuir probe describes dependence of ion cur- rent gathered by the probe on the basic parameters of ion-beam plasma. The model covers wide pa- rameters range of the ion-beam plasma, particularly the whole range typical for technological ion-beam systems. The results of numerical calculations are presented for the probe current versus probe di- mensions and potential as well as the plasma pa- rameters. The analytical expression for the ion cur- rent (modification of the Bohm formula) is derived for the large probe limit. For the numerical results the approximation formula is constructed, simplify- ing practical usage of the results. The comparison of the results of numerical calculations with the ex- perimental measurement results confirms high reli- ability of the model in wide range of parameters excluding the case of very low ion beam energy. REFERENCES 1. Gabovich M.D.//UFN.− 1977.− Vol. 121, No. 2. − P. 259-284. 2. Dudin S.V., Zykov A.V., Farenik V.I. Low Ener- gy Intense Ion Beams Space Charge Neutraliza- Fig. 10. Comparison of calculated and experimentally measured probe characteristics for Devices 2. Probe is located at the center of the beam transport chamber. S.V. DUDIN ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3 ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3280 tion//Rev. Sci. Instrum. − 1994. − Vol. 65, No. 4, Part II. − P. 1451-1453. 3. Brown I.G. The Physics and Technology of Ion Sources: Second, Revised and Extended Edition. − Wiley-VCH: New York, 2004. 4. Reece Roth J., Industrial Plasma Engineering// Applications to Nonthermal Plasma Processing (CRC Press). − 2001. − Vol. 2. 5. Rius G., Llobet J., Esplandiu M.J., Sole L., Borri- se X., Perez-Murano F.//Microelectronic Engi- neering. − 2009. − Vol. 86. − P. 892. 6. Kaufman H.R. Technology of ion beam sources in sput-tering//J. Vac. Sci. Technol. − 1979. − Vol. 15, No. 2. − P. 272-276. 7. Antonova T.N., S Dudin.V., Farenik V.I.//Prob- lems of Atomic Science and Technology. − 2003. − No. 1. − P. 147-149. 8. Bernstein I.B., Rabinowitz I. Theory of Electro- static Probes in a Low Density Plasma//Phys. Fluids, 1959. − Vol. 2. − P. 112-115. 9. Laframboise J. Rarefied Gas Dynamics. Vol. 2/ Ed J.H. de Leeuw, N.Y. − Academic Press, 1966. − 22 p. 10. Fernandez Palop J.I., Ballesteros J, Colomer V. and Hernandez M.A. Theoretical ion current to cylindrical Langmuir probes for finite ion tem- perature values//J. Phys. D: Appl. Phys. − 1996. − Vol. 29. − P. 2832-2840. 11. Dudin S.V., Rafalskyi D.V. and Zykov A.V.//Rev. Sci. Instrum. − 2010. − Vol. 81. − P. 083302. 12. Dudin S.V. and Rafalskyi D.V.//Europhys. Lett. − 2009. − Vol. 88. − P. 55002. 13. Rafalskyi D.V. and Dudin S.V.//Appl. Phys. Lett. − 2010. − Vol. 97. − P. 051501. 14. Dudin S.V.//Devices and techniquie of experi- ment. − 1994. − No. 4. − P. 78-82. 15. McNeely P., Dudin S., Christ-Koch S., Fantz U. //Plasma Sources Sci. Technol.− 2009. − Vol. 18. − P. 014011. LANGMUIR PROBE IN ION-BEAM PLASMA: THEORY VS EXPERIMENT