Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions

In this paper it was investigated the system of the hybrid iodine electrochemical supercapacitor, which provides the discharge capacity over 7500 F/g. Microporous carbon material obtained by high temperature steam activation of the natural raw materials was used as an anode material for electrodes...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Bakhmatyuk, B.P., Kurepa, A.S.
Формат: Стаття
Мова:English
Опубліковано: Науковий фізико-технологічний центр МОН та НАН України 2012
Назва видання:Физическая инженерия поверхности
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/98972
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions / B.P. Bakhmatyuk, A.S. Kurepa // Физическая инженерия поверхности. — 2012. — Т. 10, № 3. — С. 281–285. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-98972
record_format dspace
spelling irk-123456789-989722016-04-20T03:02:45Z Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions Bakhmatyuk, B.P. Kurepa, A.S. In this paper it was investigated the system of the hybrid iodine electrochemical supercapacitor, which provides the discharge capacity over 7500 F/g. Microporous carbon material obtained by high temperature steam activation of the natural raw materials was used as an anode material for electrodes preparation. Moreover, the system of hybrid alkaline electrochemical supercapacitor was investigated, and it was proved, that additional activation of the activated carbon material in the molten NaOH can increase the available for charge surface of the material. As a result, discharge capacity per weight of active material can increase up to 342 F/g and the energy density is 6.5 times greater than value of known symmetric supercapacitors. Вроботі використовуючи мікропористий вуглецевий матеріал, отриманий високотемпературною активацією у водяній парі природньої сировини, досліджена система йодидного гібридного електрохімічного суперконденсатора, що забезпечує питому ємність на розряді понад 7500 Ф/г. Досліджена система лужного гібридного електрохімічного суперконденсатора і доведено, що доактивація активованого вуглецевого матеріалу в розплаві NaOH дозволяє підвищити доступну до заряду поверхню матеріалу. І як результат дозволяє підвищити розрядну ємність на масу активного матеріалу до 342 Ф/г та збільшує питому енергоємність в 6,5 разів у порівнянніз відомими симетричними суперконденсаторами. В работе используя микропористый углеродный материал, полученный высокотемпературной активацией в водяном паре естественного сырья, исследована система йодидного гибридного электрохимического суперконденсатора, которая обеспечивает удельную емкость на разряде свыше 7500 Ф/г. Исследована система щелочного гибридного электрохимического суперконденсатора и доказано, что дополнительная активация активированного углеродного материала в расплаве NaOH, позволяет повысить доступную для заряда поверхность материала. И как результат позволяет повысить разрядную емкость на массу активного материала до 342 Ф/г и увеличивает удельную энергоемкость в 6,5 раз по сравнению с известными симметричными суперконденсаторами. 2012 Article Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions / B.P. Bakhmatyuk, A.S. Kurepa // Физическая инженерия поверхности. — 2012. — Т. 10, № 3. — С. 281–285. — Бібліогр.: 14 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/98972 541.136.88, 541.135, 544.65 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper it was investigated the system of the hybrid iodine electrochemical supercapacitor, which provides the discharge capacity over 7500 F/g. Microporous carbon material obtained by high temperature steam activation of the natural raw materials was used as an anode material for electrodes preparation. Moreover, the system of hybrid alkaline electrochemical supercapacitor was investigated, and it was proved, that additional activation of the activated carbon material in the molten NaOH can increase the available for charge surface of the material. As a result, discharge capacity per weight of active material can increase up to 342 F/g and the energy density is 6.5 times greater than value of known symmetric supercapacitors.
format Article
author Bakhmatyuk, B.P.
Kurepa, A.S.
spellingShingle Bakhmatyuk, B.P.
Kurepa, A.S.
Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions
Физическая инженерия поверхности
author_facet Bakhmatyuk, B.P.
Kurepa, A.S.
author_sort Bakhmatyuk, B.P.
title Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions
title_short Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions
title_full Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions
title_fullStr Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions
title_full_unstemmed Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions
title_sort hybrid electrochemical supercapacitors based on aqueous electrolyte solutions
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/98972
citation_txt Hybrid electrochemical supercapacitors based on aqueous electrolyte solutions / B.P. Bakhmatyuk, A.S. Kurepa // Физическая инженерия поверхности. — 2012. — Т. 10, № 3. — С. 281–285. — Бібліогр.: 14 назв. — англ.
series Физическая инженерия поверхности
work_keys_str_mv AT bakhmatyukbp hybridelectrochemicalsupercapacitorsbasedonaqueouselectrolytesolutions
AT kurepaas hybridelectrochemicalsupercapacitorsbasedonaqueouselectrolytesolutions
first_indexed 2025-07-07T07:17:16Z
last_indexed 2025-07-07T07:17:16Z
_version_ 1836971602720325632
fulltext 281 INTRODUCTION Electrochemical supercapacitors (SC) are power sources, which occupy an intermediate position between batteries and conventional capacitors. They are dynamically developing [2, 3] starting from the first patent for SC [1]. There are three main types of electrochemical supercapacitors: − double layer capacitors (DLC), which consist of ideally polarized electrodes (often from activated carbon) in organic and aqueous solutions of electrolytes [4]; − so-called pseudocapacitors, capacity of which is provided by a pseudocapacity of Faraday processes of polymers and metal oxides. For example, a pseudocapacity of hydrogenation- dehydrogenation of ruthenium oxides [5]; − hybrid electrochemical s upercapacitors (HESC), which contain well polarized electrode, based on activated carbon material and almost unpolarized counter electrode in electrolyte systems. This allows to twice the growing of potential change of the carbon electrode and the UDC 541.136.88, 541.135, 544.65 HYBRID ELECTROCHEMICAL SUPERCAPACITORS BASED ON AQUEOUS ELECTROLYTE SOLUTIONS B.P. Bakhmatyuk, A.S. Kurepa National University “Lviv Polytechnic” Ukraine Received 02.07.2012 In this paper it was investigated the system of the hybrid iodine electrochemical supercapacitor, which provides the discharge capacity over 7500 F/g. Microporous carbon material obtained by high temperature steam activation of the natural raw materials was used as an anode material for electrodes preparation. Moreover, the system of hybrid alkaline electrochemical supercapacitor was investigated, and it was proved, that additional activation of the activated carbon material in the molten NaOH can increase the available for charge surface of the material. As a result, discharge capacity per weight of active material can increase up to 342 F/g and the energy density is 6.5 times greater than value of known symmetric supercapacitors. Keywords: ultracapacitor, electrochemistry, pseudocapacitance, activated carbon, hybrid super- capacitor. В роботі використовуючи мікропористий вуглецевий матеріал, отриманий високотемпературною активацією у водяній парі природньої сировини, досліджена система йодидного гібридного елект- рохімічного суперконденсатора, що забезпечує питому ємність на розряді понад 7500 Ф/г. До- сліджена система лужного гібридного електрохімічного суперконденсатора і доведено, що до- активація активованого вуглецевого матеріалу в розплаві NaOH дозволяє підвищити доступну до заряду поверхню матеріалу. І як результат дозволяє підвищити розрядну ємність на масу активного матеріалу до 342 Ф/г та збільшує питому енергоємність в 6,5 разів у порівнянні з ві- домими симетричними суперконденсаторами. Ключові слова: суперконденсатор, електрохімія, псевдоємність, активоване вугілля, гібридний іоністор. В работе используя микропористый углеродный материал, полученный высокотемпературной активацией в водяном паре естественного сырья, исследована система йодидного гибридного электрохимического суперконденсатора, которая обеспечивает удельную емкость на разряде свыше 7500 Ф/г. Исследована система щелочного гибридного электрохимического суперконден- сатора и доказано, что дополнительная активация активированного углеродного материала в расплаве NaOH, позволяет повысить доступную для заряда поверхность материала. И как результат позволяет повысить разрядную емкость на массу активного материала до 342 Ф/г и увеличивает удельную энергоемкость в 6,5 раз по сравнению с известными симметричными суперконденсаторами. Ключевые слова: суперконденсатор, электрохимия, псевдоемкость, активированный уголь, гибридный ионистор.  B.P. Bakhmatyuk, A.S. Kurepa, 2012 ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3282 capacitance value of the unit, compared to the DLC, due to absence of the second serial polarized electrode in an equivalent electrical circuit. These factors can increase the energy of HESC some 2 to 5 times by comparison with the symmetrical design [6, 7]. However, existing electrochemical capacitor electrodes cannot provide capacity greater than 900 F/g, so it does not meet growing needs of various branches of engineering and automotive industry [4]. For example, if the HESC [6] is the system of not polarized electrode PbO2|PbSO4 and negative well polarized activated carbon electrode, between which the separator with an aqueous solution of sulfuric acid is located. In such system implementation of the total reaction is: PbO2+ 2H2SO4 + (H+)ad|E – s ↔ PbSO4 +2H2O + + (HSO– 4)ad| E + s, (1) where Es is surface of the electrode. This system provides a capacitance of carbon electrode up to 600 F/g. The disadvantages of such systems are much smaller electrical capacities of the theoretically calculated for hybrid electrochemical capacitors, and low values of energy at considerable cost to the manufacture and using environmentally hazardous materials. Constantly growing demands of engineering and electronics can be satisfied only with much more power-consuming and more powerful devices with low cost and environmental cleanliness. Objective of this paper is to create HESC with no polarized electrode and well polarized electrode based on activated carbon, which would provide tenfold increasing in electrical capacity, which would let increasing of the energy content, while using only environmentally friendly materials and lower cost of its production. EXPERIMENTAL Isotherms of the nitrogen adsorption were obtained by using Quantachrome NovaWin − Quantachrome Instruments (version 11.0). HESC have been jacketed into blister foil (fig. 1). They consist of polarized carbon electrode and unpolarized zinc- metal electrode divided by the separator with electrolyte and current collectors, which was made of stainless steel. The positive electrode was made from activated carbon with the addition of 3% teflon binder. It represents a square thin film, with 3 sm si- de, which thickness is 60 − 86 мm. For this purpose, it was used activated carbon with the surface area 1246 − 1377 m2/g. Coal film was pressed onto the current collector. Unpolarized electrode was made by prior electroplating of the metal onto the current collector with the layer thickness of 40 мm. Appo- inted electrodes was divided by a separator BAHYT-48 tacked in two layers, which was pre- viously immersed in a water solution of 30% KOH or 20%LiI + 15%ZnCl2. Charge and discharge characteristics were investigated with a help of AUTOLAB measuring complex made in Nether- lands by “ECO CHEMIE”. RESULTS AND DISCUSSION Initial activated carbon material (ACM) was ob- tained by high temperature carbonization and ac- tivation of apricot seeds in water vapor at 950 °С. The BET surface area of material was 1246 m2/g, according to nitrogen adsorption isotherms at 77 K (fig. 2a). ACM was subjected to the activation in the melt of sodium hydroxide. Homogeneous mixture of material with fivefold weight of sodium hydroxide was heated in an atmosphere of argon from room temperature to 500 °С with speed of 20 °С per minute and it was held at this temperature for 30 min. Thus additionally activated material was washed in warm water from alkali and dried. The resulting activated material (ACMR) had a BET surface value equal to 1377 m2/g (fig. 2b). The resulting ACM was tested in the system of symmetric SC in aqueous 30% KOH. Galvanostatic charge-discharge results (fig. 3) was showed typi- Fig. 1. Schematic structure of fabricated HESC prototype. HYBRID ELECTROCHEMICAL SUPERCAPACITORS BASED ON AQUEOUS ELECTROLYTE SOLUTIONS 283 cally high value of the coulomb cycle efficiency η = 99% and the capacitance C = 186 F/g. Ac- cording to the data represented in paper [8], it cor- responds to 986 m2/g of available surface for po- tassium ions charging by the equation: Сх + K+ + e− = E− s||K + , (2) here Сх – surface of the porous structure of the ACM, K+ – cations of the electrolyte, || – dual layer, where charge is accumulated by the mechanism of physical adsorption. The resulting value of C = 186 F/g is insufficient to build a competitive SC. Therefore, it was inves- tigated the system of HESC, which contains positive polarized electrode based on ACMR and negative unpolarized zinc electrode, divided by a separator immersed in an aqueous 30% KOH. There is well reverse process (2) on the positive carbon elect- rode. And as well, reverse electrode process in al- kaline medium of zinc-metal anode occurs on the negative electrode: Zn + 2ОН– = ZnO + H2O +2e−. (3) Thus the total reaction which is implemented in the capacitor will look like: 2Cx + 2K+ + ZnO + H2O = 2Cx||K + + Zn + 2ОН−. (4) Fig. 4 illustrates charge-discharge cycle of the proposed HESC. Cycle recorded in galvanostatic mode with current density i = 1 A/g, which is cal- culated for an active mass of the working electrode. Discharge presented in fig. 4 is corresponding to the capacity С = ∆Qd/∆U = 287 C/g/0.84 V = = 342 F/g with a coulombic efficiency of the cycle η = (∆Qd/∆Qc)⋅100% = (287/290)⋅100% = 99%, where ∆Qd, ∆Qc – amount of charging and dischar- ging electricity of the cycle. Significant increase in discharge capacity is related to increase of available for charge (by equation (2)) surface of ACMR up to 1100 m2/g. Charging-discharging of ACMR is oc- curs in the electrode potentials from 0.04 to −0,9 V according to the standard hydrogen electrode. Ragone dependence (fig. 5) has been calculated in the coordinates of energy density v. power density (W – P), submitted to the masses of both electrodes. For this, it was recorded galvanostatic cycles with different current loadings (from 1 to 5 A/g). The discharge energy was determined by the equation: a) b) Fig. 2. Nitrogen adsorption isotherm for activated (a) and additionally activated in NaOH (b) carbon material. Fig. 3. Galvanostatic cycle of symmetric SC in 30% aqueous solution of KOH (current density is i = 1 A/g). Fig. 4. The cycle of galvanostatic charge-discharge of proposed HESC with current density i = 1 A/g. B.P. BAKHMATYUK, A.S. KUREPA, ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3 ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3284 2 2 2 1 1 2 311 F/g 2 U UCW m m −= ⋅ = × + 2 2 21.23 0.4 V 211 J/g 59 mW h/g 2 −× = = ⋅ , (5) where C – capacity represented to the active mass of both electrodes (m1 m2), U2 and U1 – voltage of beginning and expiration of the discharge, respec- tively. The power of discharge was determined ac- cording to the next equation: P = i⋅Uav= 0.91A/g× ×0.82 V = 0.74 W/g, here Uavr– discharge volta- ge, which corresponds to 0.5∆Qd. Coulombic efficiency of cycling was within 95 − 98% The proposed alkaline HESC ensures 6.5 times increase at the energy obtained with a more than ninefold increase at the current load, compared to the alkaline symmetrical electrochemical super- capacitors [9 − 11]. For comparison of investigated energy storage systems with known lead acid and alkaline cadmium-nickel batteries, we assume that the proposed alkaline HESC will contain 30% by weight of active components of the cathode. That case values of the energy density and power power density listed to the device will be P = 222 W/kg and W = 18 W⋅h/kg. Using data obtained from the high currents discharge [12] for lead battery (P = 90 W/kg and W = 9 W⋅h/kg) and for the cadmium-nickel batteries (P = 200 W/kg and W = 10 W⋅h/kg) we find, that the proposed HESC system shows double increase of both parameters compared to the lead battery, and shows an 1.8 ti- mes increase in the energy intensity with simul- taneously little power increase, with the comparison to the cadmium-nickel battery. The ability of microporous activated carbon materials to charge up to 2000 F/g at the positive electrode polarization, which does not reach the potential of iodine allocation in the free state, has been shown in articles [13, 14]. Therefore, this article investigates iodine HESC, which has polarized, on the basis of ACM with S = 1246 m2/g, and unpola- rized metal electrodes, between which the separator with 20%LiI + 15%ZnCl2 dissolved in water is loca- ted. Consideration of the most well-known from the literature values for iodine index of activated carbon materials – 1.1 mg/m2, and the electrochemical equivalent of iodine 13.16⋅10−-4 g/C, we have cal- culated the maximum electric charge of the surfa- ce by iodine atoms – qІ = 0.836 C/m2. In this ca- se, the maximum calculated electric charge for our investigational ACM is С = 0.836 C/m2× ×1246 m2/g = 1042 C/g. Metallic zinc was used as an unpolarized electrode material. The system of iodine HESC can be represented as follows: (−)Zn|Zn2+, I−|CхI(+). (6) Well reverse process of electrochemical in- tercalation of ions into the pores with diameter d ≥ 0.45 nm occurs at polarized carbon electrodes: CxІ + e– ↔ Cx + І–, (7) where х = 9. Process of electrolytic deposition and anodic dissolution of metal is occurs at unpolarized electrode: Zn2+ + 2e− = Zn. (8) Overall current creative process of iodine HESC can be represented as follows: CхI + 0.5Zn = Cх + I− + 0.5Zn2+. (9) Manufactured HESC was charged in the po- tentiostatic mode at the potential of 1.25 V for two hours and discharged in the galvanostatic mode with value of current density – 480 mA/g (fig. 6). The resulting value of capacitance is equal to С = 834.75 C/g/0.11 V = 7589 F/g, which is calculated to the polarized electrode active material, which is 12,8 times greater than the maximum capacity of carbon electrode reported in the literature [6]. The discharge capacity and the electrical capacity of iodine HESC (fig. 6) values was P = 420 W and W = 214 W⋅h per 1 kg of active mass of used electrodes. Assume that the proposed iodine HESC will contain 25% by weight of active components of the cathode, for comparison in- vestigated system of iodine HESC with known lead acid batteries and alkaline cadmium-nickel batteries. Fig. 5. Ragone dependence for investigated alkaline HESC. HYBRID ELECTROCHEMICAL SUPERCAPACITORS BASED ON AQUEOUS ELECTROLYTE SOLUTIONS 285 Then the value of these physical quantities at device will be P = 105 W/kg and W = 53.5 W⋅h/kg, which is 6 times higher than energy consumption of lead battery with comparable power. CONCLUSIONS 1. High temperature activation of apricot seeds in water vapor provides a microporous activated carbon material with the surface by BET equal to 1246 m2/g, and its further activation at melted NaOH increases the specific surface area to 1377 m2/g. 2. Using additionally activated carbon material in the system of alkaline hybrid electrochemical supercapacitor provide 6.5 times increasing of the energy obtained in more than ninefold in- crease in the current load, in comparison with alkaline symmetrical electrochemical super- capacitors. 3. As cathode component of the iodine hybrid electrochemical supercapacitor investigated activated carbon material provides capacity that is 12.8 times exceeds the maximum capacity of carbon electrodes, which was reported in literature. Obtained values of discharge power and electrical capacity for this system reached P = 420 W and W = 214 W⋅h per 1 kg of acti- ve mass of used electrodes. 4. There are perspective of design and techno- logical work to create the appropriate device, because comparing the discharge characteristics of the investigated hybrid electrochemical supercapacitors with lead acid battery show the predominance of the first. REFERENCES 1. Becker H.E. - U.S. Patent 2 800 616 (to General Electric), 1957. 2. Lidorenko N.S.//Publ. AS USSR. – 1974. – Vol. 216. – P. 1261. 3. Yong Zhang, Hui Feng, Xingbing Wu, Lizhen Wang, Aiqin Zhang, Tongchi Xia, Huichao Dong, Xiaofeng Li, Linsen Zhang. Progress of electro- chemical capacitor electrode materials: A review //Int. J. Hydrogen Energy. – 2009. – Vol. 34. – P. 4889-4899. 4. Conway B.E. Electrochemical supercapacitors – scientific fundamentals and technological appli- cations//New York: The Kluwer Academic/Ple- num, 1999. 5. Xiaorong Liu, Peter G. Pickup. Ru oxide super- capacitors with high loadings and power and den- sities//J. of Power Soursers. – 2008. – Vol. 176. – P. 410-416. 6. Vol‘fkovich Yu.M., Serdyuk T.M. Electrochemi- cal capacitors//Elektrohimiya. – 2002. – Vol. 38, № 9. – P. 1061. 7. Belyakov A.I. Asymmetric electrochemical su- percapacitors with aqueous electrolytes//In 3rd. European Symposium on Supercapacitors and Applications (Roma, Italy). – 2008. 8. Belyakov A., Brintsev A., Khodyrevskaya N.// Proc. 14-th Intern. Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices. Deerfield Beach (USA). – 2004. – P. 84. 9. Patent № 77786, UA, MPC (2006) Н01G 2/00, Н01G 9/00. Molecular energy storage and a me- thod of manufacture electrodes for him. Venh- ryh B.Ya., Grygorchak I.I., Ponedilok G.V., Ru- davskii Yu.K., Sivers V.M., Shvets R.Ya. – Lviv Polytechnic National University. Declared 01.11.2004; Publ. 15.01.2007, Byul. №19. 10. Beguin F., Frackowiak E. Advanced Battery Ap- plications of Carbons//New York: Taylor and Francis Group, LLC. – 2010. 11. Simon P., Burke A. Nanostrured Carbons: double- layer Capacitance and more//The Electrochemi- cal Society Interface. Spring. – 2008.– P. 38-42. 12. Bagotskiy V.S., Skundin A.M. Chemical current sources. – M.: Energoizdat, 1981. – 360 p. 13. Bakhmatyuk B., Venhryn B., Grygorchak I., Mi- cov M. Influence of chemical modification of ac- tivated carbon surface on characteristics of su- percapacitors//J. of Power Sources. – 2008. – Vol. 180. – P. 890-895. 14. Bakhmatyuk B., Venhryn B., Grygorchak I., Mi- cov M., Kulyk Yu. On the hierarchy of the influ- ences of porous and electronic structures of car- bonaceous materials on parameters of molecular storage devices//Electrochimica Acta. – 2007. – Vol. 52. – P. 6604-6610. Fig. 6. Galvanostatic discharge of iodine HESC with current density 480 mA/g. B.P. BAKHMATYUK, A.S. KUREPA, ФІП ФИП PSE, 2012, т. 10, № 3 vol. 10, No. 3