Математичне моделювання процесів дифузії домішкової речовини у двофазному півпросторі з ерлангівським розподілом включень

Admixture diffusion processes are studied in a two-phase semispace of randomly nonhomogeneous stratified structure, taking into account the conditions of non-ideal mass contact on interphases. Layered inclusions are disposed by the Erlangian distribution. A mass transfer equation for whole body is o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Chaplya, Yе. Yа., Chernukha, O. Yu., Bilushchak, Yu. I.
Формат: Стаття
Мова:Ukrainian
Опубліковано: The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 2013
Онлайн доступ:http://journal.iasa.kpi.ua/article/view/43904
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:System research and information technologies

Репозитарії

System research and information technologies
Опис
Резюме:Admixture diffusion processes are studied in a two-phase semispace of randomly nonhomogeneous stratified structure, taking into account the conditions of non-ideal mass contact on interphases. Layered inclusions are disposed by the Erlangian distribution. A mass transfer equation for whole body is obtained, considering the jumps of both desired function and its derivative on the interphases. An equivalent integrodiffential equation is formulated and its solution is constructed in terms of Neumann series. Averaging the obtained solution is carried out over the ensemble of phase configurations with the Erlangian distribution function. Material characteristics influence on behaviour and values of the averaged of admixture particle concentration is established.