Об одном свойстве модулярных представлений диэдральных 2-групп
We prove that in the case of an algebraically closed field of characteristic 2 there exist infinitely many dimensions in each of which the dihedral 2-group of order s=8,16 has infinitely many faithful indecomposable pairwise non-equivalent matrix representations of non-constant rank. Cite as: Lytvyn...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
Теми: | |
Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/2461 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i MatematykyРезюме: | We prove that in the case of an algebraically closed field of characteristic 2 there exist infinitely many dimensions in each of which the dihedral 2-group of order s=8,16 has infinitely many faithful indecomposable pairwise non-equivalent matrix representations of non-constant rank. Cite as: Lytvynchuk I. V. On one property of modular representations of the dihedral 2-groups // Appl. Probl. Mech. Math. – 2017. – No. 15. – С. 24–28. [In Russian] |
---|