Моделювання та числове дослідження росту ракових пухлин

This paper investigates the numerical solution of the problem of proliferative tumor growth using a model described by an initial-boundary differential formulation in a two-dimensional environment, as proposed in the monograph [4]. The problem involves finding the distribution functions of nutrient...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Diakoniuk, L. M.; Львівський національний університет ім. Івана Франка, Львів, Nykolyshyn, T. M.; Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів, Krasichynskyi, S. B.; Львівський національний університет ім. Івана Франка, Львів
Формат: Стаття
Опубліковано: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine 2024
Теми:
Онлайн доступ:http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2024.22.46-52
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Prykladni Problemy Mekhaniky i Matematyky

Репозитарії

Prykladni Problemy Mekhaniky i Matematyky
Опис
Резюме:This paper investigates the numerical solution of the problem of proliferative tumor growth using a model described by an initial-boundary differential formulation in a two-dimensional environment, as proposed in the monograph [4]. The problem involves finding the distribution functions of nutrient substrate concentration and partial pressure, which determine the tumor boundary's growth rate [5–6]. The solution algorithm is based on combining the moving boundary method and the finite element method. A Python program with a user-friendly interface has been developed to implement the proposed approach, allowing input data to be specified in various forms to describe the research domain. A series of experiments with tumors of different shapes were conducted, demonstrating the a posteriori convergence of the numerical solutions.  Cite as: L. M. Diakoniuk, T. M. Nykolyshyn, S. B. Krasichynskyi , “Modeling and numerical investigation of cancer tumor growth,” Prykl. Probl. Mekh. Mat., Issue 22, 46–52 (2024) (in Ukrainian), https://doi.org/10.15407/apmm2024.22.46-52