Neural network simulation of the travel time curves of seismic waves

The implementation of artificial neural networks for travel-time model of P- and S-phases of seismic waves arrangement is proposed. The principles of multilayer, fullconnected, feedforward, controlled, and backpropagated neuron network functioning and approach to net topology choice and extrapolatio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Lazarenko, M. A., Gerasimenko, O. A.
Формат: Стаття
Мова:rus
Опубліковано: Subbotin Institute of Geophysics of the NAS of Ukraine 2010
Онлайн доступ:https://journals.uran.ua/geofizicheskiy/article/view/117516
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Geofizicheskiy Zhurnal

Репозитарії

Geofizicheskiy Zhurnal
id journalsuranua-geofizicheskiy-article-117516
record_format ojs
spelling journalsuranua-geofizicheskiy-article-1175162020-10-07T10:59:36Z Neural network simulation of the travel time curves of seismic waves Lazarenko, M. A. Gerasimenko, O. A. The implementation of artificial neural networks for travel-time model of P- and S-phases of seismic waves arrangement is proposed. The principles of multilayer, fullconnected, feedforward, controlled, and backpropagated neuron network functioning and approach to net topology choice and extrapolation error assessment are considered. The 3D travel-time relationships for various scenario of seismic process using the travel-time inversion based on Ukrainian seismic stations records are considered. The examples of Herglotz - Wiehert inversion for single stations as well as for arbitrary source and station coordinates in circum-Black Sea region are presented. Subbotin Institute of Geophysics of the NAS of Ukraine 2010-10-01 Article Article application/pdf https://journals.uran.ua/geofizicheskiy/article/view/117516 10.24028/gzh.0203-3100.v32i5.2010.117516 Geofizicheskiy Zhurnal; Vol. 32 No. 5 (2010); 126-141 Геофизический журнал; Том 32 № 5 (2010); 126-141 Геофізичний журнал; Том 32 № 5 (2010); 126-141 2524-1052 0203-3100 rus https://journals.uran.ua/geofizicheskiy/article/view/117516/111560 Copyright (c) 2020 Geofizicheskiy Zhurnal https://creativecommons.org/licenses/by/4.0
institution Geofizicheskiy Zhurnal
baseUrl_str
datestamp_date 2020-10-07T10:59:36Z
collection OJS
language rus
format Article
author Lazarenko, M. A.
Gerasimenko, O. A.
spellingShingle Lazarenko, M. A.
Gerasimenko, O. A.
Neural network simulation of the travel time curves of seismic waves
author_facet Lazarenko, M. A.
Gerasimenko, O. A.
author_sort Lazarenko, M. A.
title Neural network simulation of the travel time curves of seismic waves
title_short Neural network simulation of the travel time curves of seismic waves
title_full Neural network simulation of the travel time curves of seismic waves
title_fullStr Neural network simulation of the travel time curves of seismic waves
title_full_unstemmed Neural network simulation of the travel time curves of seismic waves
title_sort neural network simulation of the travel time curves of seismic waves
description The implementation of artificial neural networks for travel-time model of P- and S-phases of seismic waves arrangement is proposed. The principles of multilayer, fullconnected, feedforward, controlled, and backpropagated neuron network functioning and approach to net topology choice and extrapolation error assessment are considered. The 3D travel-time relationships for various scenario of seismic process using the travel-time inversion based on Ukrainian seismic stations records are considered. The examples of Herglotz - Wiehert inversion for single stations as well as for arbitrary source and station coordinates in circum-Black Sea region are presented.
publisher Subbotin Institute of Geophysics of the NAS of Ukraine
publishDate 2010
url https://journals.uran.ua/geofizicheskiy/article/view/117516
work_keys_str_mv AT lazarenkoma neuralnetworksimulationofthetraveltimecurvesofseismicwaves
AT gerasimenkooa neuralnetworksimulationofthetraveltimecurvesofseismicwaves
first_indexed 2025-07-17T11:08:56Z
last_indexed 2025-07-17T11:08:56Z
_version_ 1837892146799050752