Решение задачи оптимальной упаковки гомотетических эллипсоидов в контейнере минимального объема

Рассматривается задача оптимизации упаковки гомотетичных одинаково ориентированных эллипсоидов в контейнере минимального объема. Строится математическая модель в виде задачи нелинейного программирования. Ограничения непересечения эллипсоидов и их включения в контейнер построены с использованием мето...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Хлуд, О.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2016
Schriftenreihe:Проблемы машиностроения
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Решение задачи оптимальной упаковки гомотетических эллипсоидов в контейнере минимального объема / О.М. Хлуд // Проблемы машиностроения. — 2016. — Т. 19, № 2. — С. 44-49. — Бібліогр.: 9 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Рассматривается задача оптимизации упаковки гомотетичных одинаково ориентированных эллипсоидов в контейнере минимального объема. Строится математическая модель в виде задачи нелинейного программирования. Ограничения непересечения эллипсоидов и их включения в контейнер построены с использованием метода phi-функций В качестве контейнера рассматривается либо прямоугольный параллелепипед переменной длины, ширины и высоты, либо эллипсоид с переменным коэффициентом гомотетии. Предлагается алгоритм поиска локально оптимальных решений. с использованием гомотетических преобразований эллипсоидов и оптимизационной процедуры, позволяющей свести задачу с большим числом неравенств к последовательности задач с меньшим числом неравенств. Для поиска локальных минимумов задачи используется подход, в основе которого лежит метод мультистарта и оптимизационная процедура, включающая поиск допустимых стартовых точек и локальную оптимизацию. В качестве локально-оптимального решения выбирается наилучший из полученных локальных экстремумов. С целью минимизации числа нелинейных неравенств, формирующих область допустимых решений, предложена процедура LOFRT, которая позволяет значительно сократить вычислительные ресурсы. Приводятся результаты численных экспериментов.