Решение задачи оптимальной упаковки гомотетических эллипсоидов в контейнере минимального объема

Рассматривается задача оптимизации упаковки гомотетичных одинаково ориентированных эллипсоидов в контейнере минимального объема. Строится математическая модель в виде задачи нелинейного программирования. Ограничения непересечения эллипсоидов и их включения в контейнер построены с использованием мето...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Author: Хлуд, О.М.
Format: Article
Language:Russian
Published: Інстиут проблем машинобудування ім. А.М. Підгорного НАН України 2016
Series:Проблемы машиностроения
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Решение задачи оптимальной упаковки гомотетических эллипсоидов в контейнере минимального объема / О.М. Хлуд // Проблемы машиностроения. — 2016. — Т. 19, № 2. — С. 44-49. — Бібліогр.: 9 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Рассматривается задача оптимизации упаковки гомотетичных одинаково ориентированных эллипсоидов в контейнере минимального объема. Строится математическая модель в виде задачи нелинейного программирования. Ограничения непересечения эллипсоидов и их включения в контейнер построены с использованием метода phi-функций В качестве контейнера рассматривается либо прямоугольный параллелепипед переменной длины, ширины и высоты, либо эллипсоид с переменным коэффициентом гомотетии. Предлагается алгоритм поиска локально оптимальных решений. с использованием гомотетических преобразований эллипсоидов и оптимизационной процедуры, позволяющей свести задачу с большим числом неравенств к последовательности задач с меньшим числом неравенств. Для поиска локальных минимумов задачи используется подход, в основе которого лежит метод мультистарта и оптимизационная процедура, включающая поиск допустимых стартовых точек и локальную оптимизацию. В качестве локально-оптимального решения выбирается наилучший из полученных локальных экстремумов. С целью минимизации числа нелинейных неравенств, формирующих область допустимых решений, предложена процедура LOFRT, которая позволяет значительно сократить вычислительные ресурсы. Приводятся результаты численных экспериментов.