The thermal conductivity jump at crystal-liquid phase transition in CHCl₃, C₆H₆, and CCl₄: the action of rotational molecular motion

The thermal conductivity of liquid CHCl₃, C₆H₆, and CCl₄ was measured by steady-state method under saturated vapour pressure in the temperature areas that correspond to pre-crystallization temperatures. Based on the obtained experimental results, we have investigated the isobaric thermal conductivit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Pursky, I.O., Konstantinov, V.A., Bulakh, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2009
Schriftenreihe:Физика низких температур
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The thermal conductivity jump at crystal-liquid phase transition in CHCl₃, C₆H₆, and CCl₄: the action of rotational molecular motion / I.O. Pursky, V.A. Konstantinov, V.V. Bulakh // Физика низких температур. — 2009. — Т. 35, № 4. — С. 401-404. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The thermal conductivity of liquid CHCl₃, C₆H₆, and CCl₄ was measured by steady-state method under saturated vapour pressure in the temperature areas that correspond to pre-crystallization temperatures. Based on the obtained experimental results, we have investigated the isobaric thermal conductivity jump ΔΛp at crystal–liquid phase transition in CHCl₃, C₆H₆, and CCl₄. The contributions of the phonon–phonon and phonon–rotational interaction to the total thermal resistance, in solid and liquid state, are specified using modified method of reduced coordinates. A reduction in the thermal conductivity ΔΛp at crystal–liquid phase transition is explained by a combined effect of variations in positional distribution of molecules and in form of rotational molecular motion.