Exciton effects in band-edge electroluminescence of silicon barrier structures

A theoretical analysis of the band-edge electroluminescence efficiency in silicon diodes and p-i-n-structures has been made. We have shown that maximal possible efficiency can achieve 10 % both at room and liquid nitrogen temperatures. Maximal values of the efficiency are restricted by the interband...

Full description

Saved in:
Bibliographic Details
Date:2004
Main Authors: Sachenko, A.V., Gorban, A.P., Korbutyak, D.V., Kostylyov, V.P., Kryuchenko, Yu.V., Chernenko, V.V.
Format: Article
Language:English
Published: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2004
Series:Semiconductor Physics Quantum Electronics & Optoelectronics
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Exciton effects in band-edge electroluminescence of silicon barrier structures / A.V. Sachenko, A.P. Gorban, D.V. Korbutyak, V.P. Kostylyov, Yu.V. Kryuchenko, V.V. Chernenko // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2004. — Т. 7, № 1. — С. 1-7. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:A theoretical analysis of the band-edge electroluminescence efficiency in silicon diodes and p-i-n-structures has been made. We have shown that maximal possible efficiency can achieve 10 % both at room and liquid nitrogen temperatures. Maximal values of the efficiency are restricted by the interband Auger recombination process. It is found that electroluminescence efficiency decreases rapidly with the decrease of characteristic Shockley- Reed-Hall nonradiative lifetime for minority carriers. It is shown that even at room temperatures the main contribution into the edge electroluminescence in silicon barrier structures is given by excitonic effects. Dark I-V characteristics of directly biased silicon diodes measured both at room and nitrogen temperatures are used to explain anomalous temperature dependencies of silicon diode electroluminescence.