Слабо плоские пространства и границы в теории отображений
Исследуется проблема продолжения на границу так называемых Q-гомеоморфизмов между областями в метрических пространствах c мерами. Сформулированы условия на функцию Q(x) и границу области, при которых всякий Q-гомеоморфизм допускает непрерывное или гомеоморфное продолжение на границу. Результаты прим...
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2007
|
Schriftenreihe: | Український математичний вісник |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Слабо плоские пространства и границы в теории отображений / В.И. Рязанов, Р.Р. Салимов // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 199-234. — Бібліогр.: 42 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Исследуется проблема продолжения на границу так называемых Q-гомеоморфизмов между областями в метрических пространствах c мерами. Сформулированы условия на функцию Q(x) и границу области, при которых всякий Q-гомеоморфизм допускает непрерывное или гомеоморфное продолжение на границу. Результаты применимы, в частности, к римановым многообразиям, пространствам Левнера, группам Карно и Гейзенберга. |
---|