Конечное среднее колебание в теории отображений
Мы говорим, что функция Q(x) имеет конечное среднее колебание в точке, если ее среднее отклонение от среднего значения ограничено по всем шарам с центрами в этой точке с достаточно малыми радиусами, другими словами, если дисперсия по всем малым шарам с центром в данной точке ограничена. Показано, чт...
Gespeichert in:
Datum: | 2005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2005
|
Schriftenreihe: | Український математичний вісник |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Конечное среднее колебание в теории отображений / А.А. Игнатьев, В.И. Рязанов // Український математичний вісник. — 2005. — Т. 2, № 3. — С. 395-417. — Бібліогр.: 77 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Мы говорим, что функция Q(x) имеет конечное среднее колебание в точке, если ее среднее отклонение от среднего значения ограничено по всем шарам с центрами в этой точке с достаточно малыми радиусами, другими словами, если дисперсия по всем малым шарам с центром в данной точке ограничена. Показано, что изолированная сингулярность устранима для Q-гомеоморфизмов при условии, что Q(x) имеет конечное среднее колебание в точке. Доказан также аналог известной теоремы Пенлеве для аналитических функций при условии, что Q(x) имеет конечное среднее колебание на сингулярном множестве нулевой длины. Результаты применимы ко многим классам отображений с конечным искажением. |
---|