Алгоритмы обучения нейронных сетей и нейро-фаззи систем c сепарабельной структурой

Рассматриваются задачи обучения нейронных сетей и нейро-фаззи систем, приводящие к сепарабельным моделям структурам, нелинейным относительно некоторых неизвестных параметров и линейным относительно других неизвестных. Предлагаются новые алгоритмы их обучения, в основе которых нелинейная оптимизацион...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Author: Скороход, Б.А.
Format: Article
Language:Russian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2015
Series:Кибернетика и системный анализ
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Алгоритмы обучения нейронных сетей и нейро-фаззи систем c сепарабельной структурой / Б.А. Скороход // Кибернетика и системный анализ. — 2015. — Т. 51, № 2. — С. 13-28. — Бібліогр.: 22 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Рассматриваются задачи обучения нейронных сетей и нейро-фаззи систем, приводящие к сепарабельным моделям структурам, нелинейным относительно некоторых неизвестных параметров и линейным относительно других неизвестных. Предлагаются новые алгоритмы их обучения, в основе которых нелинейная оптимизационная задача, включающая априорную информацию только о нелинейно входящих параметрах. Предполагается, что она может быть получена по обучающему множеству, распределению генерирующей выборки или лингвистической информации. Для решения задачи используются метод Гаусса Ньютона с линеаризацией в окрестности последней оценки, асимптотические представления псевдоинверсий возмущенных матриц и сепарабельная структура моделей. Полученные алгоритмы обладают рядом важных свойств: не требуется подбора начальных значений для линейно входящих параметров, который может приводить к расходимости, но при этом нет необходимости находить частные производные от проекционной матрицы; могут быть использованы в режимах последовательной и пакетной обработки; как частный случай, из них следуют известные алгоритмы, а моделирование показывает, что разработанные алгоритмы могут превосходить известные по точности и скорости сходимости.