Scale-Dependent Functions, Stochastic Quantization and Renormalization
We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions φ(b) ∊ L²(Rd) to the theory of functions that depend on coordinate b and resoluti...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Scale-Dependent Functions, Stochastic Quantization and Renormalization / M.V. Altaisky // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions φ(b) ∊ L²(Rd) to the theory of functions that depend on coordinate b and resolution a. In the simplest case such field theory turns out to be a theory of fields φa(b,·) defined on the affine group G: x′ = ax+b, a > 0, x, b ∊ Rd, which consists of dilations and translation of Euclidean space. The fields φa(b,·) are constructed using the continuous wavelet transform. The parameters of the theory can explicitly depend on the resolution a. The proper choice of the scale dependence g = g(a) makes such theory free of divergences by construction |
---|