Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions

We apply a symmetrization procedure to the setting of Jacobi expansions and study potential spaces in the resulting situation. We prove that the potential spaces of integer orders are isomorphic to suitably defined Sobolev spaces. Among further results, we obtain a fractional square function charact...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Langowski, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions / B. Langowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id oai:nasplib.isofts.kiev.ua:123456789-147141
record_format dspace
spelling oai:nasplib.isofts.kiev.ua:123456789-1471412025-02-23T17:39:51Z Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions Langowski, B. We apply a symmetrization procedure to the setting of Jacobi expansions and study potential spaces in the resulting situation. We prove that the potential spaces of integer orders are isomorphic to suitably defined Sobolev spaces. Among further results, we obtain a fractional square function characterization, structural theorems and Sobolev type embedding theorems for these potential spaces. This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. The author would like to express his gratitude to Professor Adam Nowak for indicating the topic and constant support during the preparation of this paper. Research supported by the National Science Centre of Poland, project No. 2013/09/N/ST1/04120. 2015 Article Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions / B. Langowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C10; 42C05; 42C20 DOI:10.3842/SIGMA.2015.073 https://nasplib.isofts.kiev.ua/handle/123456789/147141 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We apply a symmetrization procedure to the setting of Jacobi expansions and study potential spaces in the resulting situation. We prove that the potential spaces of integer orders are isomorphic to suitably defined Sobolev spaces. Among further results, we obtain a fractional square function characterization, structural theorems and Sobolev type embedding theorems for these potential spaces.
format Article
author Langowski, B.
spellingShingle Langowski, B.
Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Langowski, B.
author_sort Langowski, B.
title Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions
title_short Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions
title_full Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions
title_fullStr Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions
title_full_unstemmed Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions
title_sort potential and sobolev spaces related to symmetrized jacobi expansions
publisher Інститут математики НАН України
publishDate 2015
citation_txt Potential and Sobolev Spaces Related to Symmetrized Jacobi Expansions / B. Langowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT langowskib potentialandsobolevspacesrelatedtosymmetrizedjacobiexpansions
first_indexed 2025-07-22T04:24:17Z
last_indexed 2025-07-22T04:24:17Z
_version_ 1838319673220792320