Polarisation of Graded Bundles

We construct the full linearisation functor which takes a graded bundle of degree k (a particular kind of graded manifold) and produces a k-fold vector bundle. We fully characterise the image of the full linearisation functor and show that we obtain a subcategory of k-fold vector bundles consisting...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Bruce, A.J., Grabowski, J., Rotkiewicz, M.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Series:Symmetry, Integrability and Geometry: Methods and Applications
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Polarisation of Graded Bundles / A.J. Bruce, J. Grabowski, M. Rotkiewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We construct the full linearisation functor which takes a graded bundle of degree k (a particular kind of graded manifold) and produces a k-fold vector bundle. We fully characterise the image of the full linearisation functor and show that we obtain a subcategory of k-fold vector bundles consisting of symmetric k-fold vector bundles equipped with a family of morphisms indexed by the symmetric group Sk. Interestingly, for the degree 2 case this additional structure gives rise to the notion of a symplectical double vector bundle, which is the skew-symmetric analogue of a metric double vector bundle. We also discuss the related case of fully linearising N-manifolds, and how one can use the full linearisation functor to ''superise'' a graded bundle.