Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces
We study the structure of differential equations of one-dimensional dispersive flows into compact Riemann surfaces. These equations geometrically generalize two-sphere valued systems modeling the motion of vortex filament. We define a generalized Hasimoto transform by constructing a good moving fram...
Gespeichert in:
Datum: | 2008 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2008
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces / E. Onodera // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We study the structure of differential equations of one-dimensional dispersive flows into compact Riemann surfaces. These equations geometrically generalize two-sphere valued systems modeling the motion of vortex filament. We define a generalized Hasimoto transform by constructing a good moving frame, and reduce the equation with values in the induced bundle to a complex valued equation which is easy to handle. We also discuss the relationship between our reduction and the theory of linear dispersive partial differential equations. |
---|