Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces

We study the structure of differential equations of one-dimensional dispersive flows into compact Riemann surfaces. These equations geometrically generalize two-sphere valued systems modeling the motion of vortex filament. We define a generalized Hasimoto transform by constructing a good moving fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Onodera, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces / E. Onodera // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We study the structure of differential equations of one-dimensional dispersive flows into compact Riemann surfaces. These equations geometrically generalize two-sphere valued systems modeling the motion of vortex filament. We define a generalized Hasimoto transform by constructing a good moving frame, and reduce the equation with values in the induced bundle to a complex valued equation which is easy to handle. We also discuss the relationship between our reduction and the theory of linear dispersive partial differential equations.