Local Quasitriangular Hopf Algebras
We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang-Baxter equation in a systematic way. The category of modules with finite cycles over a local quasitriangular Hopf alge...
Saved in:
Date: | 2008 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2008
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Local Quasitriangular Hopf Algebras / S. Zhang, M.D. Gould, Yao-Zhong Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang-Baxter equation in a systematic way. The category of modules with finite cycles over a local quasitriangular Hopf algebra is a braided tensor category. |
---|