The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented pap...
Gespeichert in:
Datum: | 2016 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2016
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs / B.T. Pawlik // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 264–281. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented paper the~stabilizer of the set of all diagonal bases in Sn(2) is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly 2n−1 diagonal bases and 2²n−²n bases at all. Recursive construction of Cayley graphs of Pn(2) on diagonal bases (n≥2) is proposed. |
---|