О неравенствах для норм промежуточных производных на конечном интервале
For functionsf which have an absolute continuous (n−1)th derivative on the interval [0, 1], it is proved that, in the case ofn>4, the inequality ‖‖f(n−2)‖‖∞⩽4n−2(n−1)!‖f‖∞+‖‖f(n)‖‖∞/2 holds with the exact constant 4 n−2(n−1)!.
Saved in:
Date: | 1995 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | Russian |
Published: |
Інститут математики НАН України
1995
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | О неравенствах для норм промежуточных производных на конечном интервале / В.Ф. Бабенко, С.А. Кофанов, С.А. Пичугов // Український математичний журнал. — 1995. — Т. 47, № 1. — С. 105–107. — Бібліогр.: 4 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | For functionsf which have an absolute continuous (n−1)th derivative on the interval [0, 1], it is proved that, in the case ofn>4, the inequality
‖‖f(n−2)‖‖∞⩽4n−2(n−1)!‖f‖∞+‖‖f(n)‖‖∞/2
holds with the exact constant 4 n−2(n−1)!. |
---|