Enhancement of local electric field in core-shell orientation of ellipsoidal metal/dielectric nanoparticles

In this paper it is shown that the enhancement factor of the local electric field in metal covered ellipsoidal nanoparticles embedded in a dielectric host matrix has two maxima at two different frequencies. The second maximum for the metal covered inclusions with large dielectric core (small metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Ismail, A.A., Gholap, A.V., Abbo, Y.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2017
Schriftenreihe:Condensed Matter Physics
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Enhancement of local electric field in core-shell orientation of ellipsoidal metal/dielectric nanoparticles / A.A. Ismail, A.V. Gholap, Y.A. Abbo // Condensed Matter Physics. — 2017. — Т. 20, № 2. — С. 23401: 1–11. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper it is shown that the enhancement factor of the local electric field in metal covered ellipsoidal nanoparticles embedded in a dielectric host matrix has two maxima at two different frequencies. The second maximum for the metal covered inclusions with large dielectric core (small metal fraction p) is comparatively large. This maximum strongly depends on the depolarization factor of the core L⁽¹⁾z , keeping that of the shell L⁽²⁾z constant and is less than L⁽¹⁾z . If the frequency of the external radiation approaches the frequency of surface plasmons of a metal, the local field in the particle considerably increases. The importance of maximum value of enhancement factor |A|² of the ellipsoidal inclusion is emphasized in the case where the dielectric core exceeds metal fraction of the inclusion. The results of numerical computations for typical small silver particles are presented graphically.