On the Lie algebra structures connected with Hamiltonian dynamical systems
We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thu...
Saved in:
Date: | 1997 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
1997
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On the Lie algebra structures connected with Hamiltonian dynamical systems / R.G. Smirnov // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 699–705. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thus obtained hierarchy of vector fields. The approach is shown to be applicable for the Volterra and Toda lattices. |
---|