On the Lie algebra structures connected with Hamiltonian dynamical systems
We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the Hamiltonian vector fields preserving a recursion operator. Similarly, repeatedly contracting a Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of the thu...
Saved in:
Date: | 1997 |
---|---|
Main Author: | Smirnov, R.G. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
1997
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On the Lie algebra structures connected with Hamiltonian dynamical systems / R.G. Smirnov // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 699–705. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the Lie algebra structures connected with Hamiltonian dynamical systems
by: Smirnov, R.G.
Published: (1997) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003) -
Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
by: Prykarpatsky, A.K., et al.
Published: (2004) -
Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
by: Prykarpatsky, A.K., et al.
Published: (2004)