Про аналітичні розв'язки диференціально-операторних рівнянь
Знайдено умови на замкнений оператор А в банаховому просторі, необхідні і достатні для існування розв'язків диференціального рівняння y'(t)=Ay(t),t∈[0,∞), в класах цілих вектор-функцій із заданими порядком росту і типом. Наведено ознаки щільності таких класів у множині всіх розв'язків...
Saved in:
Date: | 2000 |
---|---|
Main Author: | |
Format: | Article |
Language: | Ukrainian |
Published: |
Інститут математики НАН України
2000
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Про аналітичні розв'язки диференціально-операторних рівнянь / М.Л. Горбачук // Український математичний журнал. — 2000. — Т. 52, № 5. — С. 596–607. — Бібліогр.: 11 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Знайдено умови на замкнений оператор А в банаховому просторі, необхідні і достатні для існування розв'язків диференціального рівняння y'(t)=Ay(t),t∈[0,∞), в класах цілих вектор-функцій із заданими порядком росту і типом. Наведено ознаки щільності таких класів у множині всіх розв'язків. Ці ознаки дають можливість довести існування розв'язкузадачі Коші для розглядуваного рівняння в класі аналітичних вектор-функцій і обгрунтувати збіжність наближеного методу степеневих рядів, В частиннному випадку, коли A — диференціальний оператор, проблема про можливість застосування цього методу була поставлена Вейєрштрассом. Умови, за яких це можливо, були знайдені Ковалевською (відома теорема Ковалевської). |
---|