Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems

A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Bå...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Prykarpatsky, A.K., Hentosh, O.Ye.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2004
Schriftenreihe:Український математичний журнал
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems / A.K. Prykarpatsky, O.Ye. Hentosh // Український математичний журнал. — 2004. — Т. 56, № 7. — С. 939–946. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Båcklund transformation. The connection of this hierarchy with Lax-integrable two-metrizable systems is studied.