The Jacobi Field of a Lévy Process

We derive an explicit formula for the Jacobi field that is acting in an extended Fock space and corresponds to an ( R -valued) Lévy process on a Riemannian manifold. The support of the measure of jumps in the Lévy–Khintchine representation for the Lévy process is supposed to have an infinite number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
Hauptverfasser: Berezansky, Yu.M., Lytvynov, E., Mierzejewski, D.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2003
Schriftenreihe:Український математичний журнал
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Jacobi Field of a Lévy Process / Yu.M. Berezansky, E. Lytvynov, D.A. Mierzejewski // Український математичний журнал. — 2003. — Т. 55, № 5. — С. 706–710. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We derive an explicit formula for the Jacobi field that is acting in an extended Fock space and corresponds to an ( R -valued) Lévy process on a Riemannian manifold. The support of the measure of jumps in the Lévy–Khintchine representation for the Lévy process is supposed to have an infinite number of points. We characterize the gamma, Pascal, and Meixner processes as the only Lévy process whose Jacobi field leaves the set of finite continuous elements of the extended Fock space invariant.