Стійкість обмежених розв'язків диференціальних рівнянь з малим параметром у банаховому просторі
Доведено, що для секторіальиого оператора AA зі спектром σ(A), який діє на комплексному банаховому просторі B. Умова σ(A) ∩ i R = Ø є достатньою для того, щоб диференціальне рівняння з малим додатним параметром εx′ε′(t)+x′ε(t)=Axε(t)+f(t),t ∈ R, мало єдиний обмежений розв'язок лє для довільної...
Saved in:
Date: | 2003 |
---|---|
Main Author: | |
Format: | Article |
Language: | Ukrainian |
Published: |
Інститут математики НАН України
2003
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Стійкість обмежених розв'язків диференціальних рівнянь з малим параметром у банаховому просторі / М.Ф. Городній // Український математичний журнал. — 2003. — Т. 55, № 7. — С. 889–900. — Бібліогр.: 8 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Доведено, що для секторіальиого оператора AA зі спектром σ(A), який діє на комплексному банаховому просторі B. Умова σ(A) ∩ i R = Ø є достатньою для того, щоб диференціальне рівняння з малим додатним параметром εx′ε′(t)+x′ε(t)=Axε(t)+f(t),t ∈ R, мало єдиний обмежений розв'язок лє для довільної обмеженої функції f: R→B, що задовольняє певну умову Гельдера. Також встановлено, що при ε→0+ обмежені розв'язки таких рівнянь збігаються рівномірно на R до єдиного обмеженого розв'язку диференціального рівняння x'(t)=Ax(t)+f(t). |
---|