Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment
For the equation L₀x(t) + L₁x⁽¹⁾(t) + ... + Lnx⁽ⁿ⁾(t) = 0, where Lk, k = 0, 1, ... , n, are operators acting in a Banach space, we formulate conditions under which a solution x(t) that satisfies some nonlocal homogeneous boundary conditions is equal to zero.
Gespeichert in:
Datum: | 2003 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2003
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment / G.V. Radzievskii // Український математичний журнал. — 2003. — Т. 55, № 7. — С. 1006–1009. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | For the equation L₀x(t) + L₁x⁽¹⁾(t) + ... + Lnx⁽ⁿ⁾(t) = 0, where Lk, k = 0, 1, ... , n, are operators acting in a Banach space, we formulate conditions under which a solution x(t) that satisfies some nonlocal homogeneous boundary conditions is equal to zero. |
---|