Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment

For the equation L₀x(t) + L₁x⁽¹⁾(t) + ... + Lnx⁽ⁿ⁾(t) = 0, where Lk, k = 0, 1, ... , n, are operators acting in a Banach space, we formulate conditions under which a solution x(t) that satisfies some nonlocal homogeneous boundary conditions is equal to zero.

Saved in:
Bibliographic Details
Date:2003
Main Author: Radzievskii, G.V.
Format: Article
Language:English
Published: Інститут математики НАН України 2003
Series:Український математичний журнал
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment / G.V. Radzievskii // Український математичний журнал. — 2003. — Т. 55, № 7. — С. 1006–1009. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:For the equation L₀x(t) + L₁x⁽¹⁾(t) + ... + Lnx⁽ⁿ⁾(t) = 0, where Lk, k = 0, 1, ... , n, are operators acting in a Banach space, we formulate conditions under which a solution x(t) that satisfies some nonlocal homogeneous boundary conditions is equal to zero.