Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment
For the equation L₀x(t) + L₁x⁽¹⁾(t) + ... + Lnx⁽ⁿ⁾(t) = 0, where Lk, k = 0, 1, ... , n, are operators acting in a Banach space, we formulate conditions under which a solution x(t) that satisfies some nonlocal homogeneous boundary conditions is equal to zero.
Saved in:
Date: | 2003 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2003
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Uniqueness of Solutions of Some Nonlocal Boundary-Value Problems for Operator-Differential Equations on a Finite Segment / G.V. Radzievskii // Український математичний журнал. — 2003. — Т. 55, № 7. — С. 1006–1009. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | For the equation L₀x(t) + L₁x⁽¹⁾(t) + ... + Lnx⁽ⁿ⁾(t) = 0, where Lk, k = 0, 1, ... , n, are operators acting in a Banach space, we formulate conditions under which a solution x(t) that satisfies some nonlocal homogeneous boundary conditions is equal to zero. |
---|