Equilibrium and Nonequilibrium States of the Model Fröhlich–Peierls Hamiltonian

The model Fröhlich–Peierls Hamiltonian for electrons interacting with phonons only in some infinite discrete modes is considered. It is shown that, in the equilibrium case, this model is thermodynamically equivalent to the model of electrons with periodic potential and free phonons. In the one-dimen...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Petrina, D.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2003
Назва видання:Український математичний журнал
Теми:
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Equilibrium and Nonequilibrium States of the Model Fröhlich–Peierls Hamiltonian / D.Ya. Petrina // Український математичний журнал. — 2003. — Т. 55, № 8. — С. 1069–1086. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The model Fröhlich–Peierls Hamiltonian for electrons interacting with phonons only in some infinite discrete modes is considered. It is shown that, in the equilibrium case, this model is thermodynamically equivalent to the model of electrons with periodic potential and free phonons. In the one-dimensional case, the potential is determined exactly in terms of the Weierstrass elliptic function, and the eigenvalue problem can also be solved exactly. Nonequilibrium states are described by the nonlinear Schrödinger and wave equations, which have exact soliton solutions in the one-dimensional case.