Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems
We consider a singularly perturbed system depending on two parameters with two (possibly the same) normally hyperbolic centre manifolds. We assume that the unperturbed system has an orbit connecting a hyperbolic fixed point on one centre manifold to a hyperbolic fixed point on the other. Then we p...
Gespeichert in:
Datum: | 2008 |
---|---|
Hauptverfasser: | Battelli, F., Palmer, K.J. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2008
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems / F. Battelli, K.J. Palmer // Український математичний журнал. — 2008. — Т. 60, № 1. — С. 28–55. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems
von: Battelli, F., et al.
Veröffentlicht: (2008) -
Bifurcation structure of interval maps with orbits homoclinic to a saddle-focus
von: C. Hinsley, et al.
Veröffentlicht: (2023) -
The Lyapunov–Schmidt Approach to Studying Homoclinic Splitting in Weakly Perturbed Lagrangian and Hamiltonian Systems
von: Samoilenko, A.M., et al.
Veröffentlicht: (2003) -
The Lyapunov–Schmidt Approach to Studying Homoclinic Splitting in Weakly Perturbed Lagrangian and Hamiltonian Systems
von: Samoilenko, A.M., et al.
Veröffentlicht: (2003) -
Singularly perturbed stochastic systems
von: Korolyuk, V.S.
Veröffentlicht: (1997)