Asymptotic behavior of solutions of a nonlinear difference equation with continuous argument

We consider the difference equation with continuous argument x(t+2)−2λx(t+1)+λ²x(t)=f(t,x(t)), where λ > 0, t ∈ [0, ∞), and f: [0, ∞) × R → R. Conditions for the existence and uniqueness of continuous asymptotically periodic solutions of this equation are given. We also prove the following re...

Full description

Saved in:
Bibliographic Details
Date:2004
Main Author: Stevic, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2004
Series:Український математичний журнал
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Asymptotic behavior of solutions of a nonlinear difference equation with continuous argument / S. Stevic // Український математичний журнал. — 2004. — Т. 56, № 8. — С. 1095–1100. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We consider the difference equation with continuous argument x(t+2)−2λx(t+1)+λ²x(t)=f(t,x(t)), where λ > 0, t ∈ [0, ∞), and f: [0, ∞) × R → R. Conditions for the existence and uniqueness of continuous asymptotically periodic solutions of this equation are given. We also prove the following result: Let x(t) be a real continuous function such that limt→∞(x(t+2)−(1−α)x(t+1)−αx(t))=0 for some α ∈ R. Then it always follows from the boundedness of x(t) that limt→∞(x(t+1)−x(t))=0 t → ∞ if and only if α ∈ R {1}.